Skip to main content
Log in

Drilling studies of an Al2O3-Al metal matrix composite

Part I Drill wear characteristics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Comparative drilling studies have been carried out for a 20% Al2O3 microsphere reinforced Al metal matrix composite (MMC) using a (a) high speed steel (HSS) drill, (b) tungsten carbide (WC) drill and (c) polycrystalline diamond (PCD) drill. In this part of the paper, the flank wear characteristics of the drills have been presented. It is found that for the HSS drill a flank wear of 1.00 mm is reached in drilling for as little as 12 s. In contrast, under similar conditions for the WC drill, a flank wear of 0.16 mm was observed after drilling for a period of 600 s and in the case of the PCD drill, after 2210 s of drilling a flank wear of only 0.12 mm was observed. The PCD drill, however, showed some signs of chipping in the early stage, but this seemed to stabilize later on. Scanning electron microscopic (SEM) observations of the worn drill tips revealed that in addition to flank wear the HSS exhibited margin wear, the WC drill exhibited both margin wear and chisel edge wear and the PCD drill displayed crater wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Schmidt, C. Zweben and R. Arsenault, in “Thermal and Mechanical Behaviour of Metal and Ceramic Matrix Composites”, edited by J. Kennedy, H. Moeller and W. Johnson (American Society for Testing Materials, Philadelphia, PA, 1990) pp. 155–164.

    Chapter  Google Scholar 

  2. D. M. Harmon, C. R. Saff and D. L. Graves, in “Metal Matrix Composites-Testing, Analysis and Failure”, edited by W. S. Johnson (American Society for Testing Materials, Philadelphia, PA, 1990) pp. 222–36.

    Google Scholar 

  3. B. Terry and G. Jones, “Metal Matrix Composites” (Elsevier, London, 1990).

    Google Scholar 

  4. T. A. Loftin, in “Composites Applications”. 1st Edn (Society of Manufacturing Engineers, MI, 1989) pp. 59–70.

    Google Scholar 

  5. F. A. Girot, J. M. Quenisset and R. Naslain, Compos. Sci. Technol. 30 (1987) 155.

    Article  CAS  Google Scholar 

  6. C. Zweben, “Metal Matrix Composites Overview”, No. 253, (Department of Defence, Metal Matrix Composites Information Analysis Centre, Santa Barbara, CA, 1985).

    Google Scholar 

  7. A. R. Chambers and S. E. Stephens, Mater. Sci. Engng A135 (1991) 287.

    Article  CAS  Google Scholar 

  8. S. Bandyopadhyay, T. Das, S. Blairs, S. Bhattacharya and J. Unsworth, in Proceedings Composites Asia Pacific 91, Vol. 1, Melbourne, Australia, 1991. (Composites Institute of Australia) pp. 1–33.

  9. M. Taya and R. J. Arsenault, “Metal Matrix Composites” (Pergamon, London, 1989) pp. 1–20.

    Book  Google Scholar 

  10. S. Abrate and D. A. Walton, Compos. Manufacturing 3 (1992) 75.

    Article  Google Scholar 

  11. E. Sprow, Tooling & Production 43 (1987) 46.

    Google Scholar 

  12. B. Lambert, Carbide and Tool J. 19 (1987) 31.

    CAS  Google Scholar 

  13. J. E. Schoutens, J. Metals 37 (1985) 43.

    Google Scholar 

  14. Alcan, Duralcan Composites-Machining Guidelines (1992).

  15. N. Tomac and K. Tonnessen, CIRP 41 (1992) 55.

    Article  Google Scholar 

  16. M. K. Brun, M. Lee and F. Gorsler, Wear 104 (1985) 21.

    Article  Google Scholar 

  17. R. Wyss and E. Pollack, Ind. Prod. Engng (1990) S70.

  18. P. J. Heath, Euro. J. Engng Education 12 (1987) 5.

    Article  Google Scholar 

  19. Idem, “Machining of Metal Matrix Composites with Cemented Tungsten Carbide and Polycrystalline Diamond” internal reports (DeBeers Industrial Diamond Division, 1990).

  20. L. A. Kendell, “Tool Wear and Tool Life”, pp. 37–48 in “Metals Handbook”, 9th Edn, Vol. 16 (American Society for Metals, Metals Park, OH, 1989) pp. 37–48.

    Google Scholar 

  21. S. Soderberg, O. Vingsbo and M. Nissle, Wear 75 (1985) 123.

    Article  Google Scholar 

  22. D. Tabor, J. Lubric. Technol. 99 (1977) 931.

    Article  Google Scholar 

  23. P. K. Wrightand and A. Bagchi, J. Appl. Metal Working 1 (1982) 15.

    Article  Google Scholar 

  24. S. Ramalingam and P. K. Wright, J. Engng Mater. Technol. (1981) (from [23]).

  25. C. T. Lane, in “Continuous Improvement, Tool and Manufacturing Engineers Handbook”, Vol. 7 (Society for Mechanical Engineers, 1993).

  26. Idem, “Using Polycrystalline Diamond Veined Drills on Silicon Carbide Particulate Reinforced Aluminium Castings” (Duralcan, 1992).

  27. M. J. Couper and K. Xia, in “Riso Conference on Metal Matrix Composites-Processing, Microstructure and Properties” (Roskilde, Denmark, 1991) pp. 291–298.

    Google Scholar 

  28. K. Xia, in “Second Australian Forum on Metal Matrix Composites, 1991”, edited by S. Bandyopadhyay and A. Crosky (School of Materials Science and Engineering, UNSW, Sydney, 1991) pp. 1–2.

    Google Scholar 

  29. D. L. McDanels, Metall Trans. A 16A (1985) 1105.

    Article  CAS  Google Scholar 

  30. R. B. Bhagat, M. F. Amateau, M. B. House, K. C. Meinert and P. Nisson, J. Compos. Mater. 26(1992) 1578.

    Article  CAS  Google Scholar 

  31. J. P. Unsworth and S. Bandyopadhyay, J. Mater. Sci. 29 (1994) 4645.

    Article  CAS  Google Scholar 

  32. A. Lammer, Mater. Sci. Tech. 4 (1988) 949.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mubaraki, B., Bandyopadhyay, S., Fowle, R. et al. Drilling studies of an Al2O3-Al metal matrix composite. Journal of Materials Science 30, 6273–6280 (1995). https://doi.org/10.1007/BF00369677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369677

Keywords

Navigation