Skip to main content
Log in

A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A mathematical model is described for the simultaneous saccharification and ethanol fermentation (SSF) of sago starch using amyloglucosidase (AMG) and Zymomonas mobilis. By introducing the degree of polymerization (DP) of oligosaccharides produced from sago starch treated with α-amylase, a series of Michaelis-Menten equations were obtained. After determining kinetic parameters from the results of simple experiments carried out at various substrate and enzyme concentrations and from the subsite mapping theory, this model was adapted to simulate the SSF process. The results of simulation for SSF are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α g/g:

rate coefficient of production

μ max 1/h:

maximum specific growth rate

E %, v/w:

AMG concentration

G 1 mmol/l:

glucose concentration

G c mmol/l:

glucose concentration consumed

G f mmol/l:

glucose concentration formed

G n mmol/l:

n-mer maltooligosaccharide concentration

K i g/l:

ethanol inhibition constant for ethanol production

K g mmol/l:

glucose inhibition constant for glucose production

K p mmol/l:

glucose limitation constant for ethanol production

K x mmol/l:

glucose limitation constant for cell growth

K m,n mmol/l:

Michaelis-Menten constant for n-mer oligosaccharide

k e %, v/w:

enzyme limitation constant

k es :

proportional constant

k max, n 1/s:

maximal velocity for n-mer digestion

k s g/l:

substrate limitation constant

m s g/g:

maintenance energy

MW n g/mol:

molecular weight of n-mer oligosaccharide

P g/l:

ethanol concentration

P 0 g/l:

initial ethanol concentration

P m g/l:

maximal ethanol concentration

Q pm g/(g · h):

maximum specific ethanol production rate

S n mmol/h:

branched n-mer oligosaccharide concentration

S 0 g/l:

initial starch concentration

S sta g/l:

starch concentration

S tot g/l:

total sugar concentration

V max, n 1/h:

maximum digestion rate of n-mer oligosaccharide

V 0 g/(l · h):

initial glucose formation rate

X g/l:

cell mass

X 0 g/l:

initial cell mass

Y p/s g/g:

ethanol yield

Y x/s g/g:

cell mass yield

References

  1. Lee, J. H.; Pagan, R. J.; Rogers, P. L.: Continuous simultaneous saccharification and fermentation of starch using Zymomonas mobilis. Biotechnol. Bioeng. 25 (1983) 659–669

    Google Scholar 

  2. de Menezes, T. J. B.: Starchy materials for alcohol fuel production. Process Biochem. 17 (1982) 32–35

    Google Scholar 

  3. Poosaran, N.; Heyes, R. H.; Rogers, P. L.: Ethanol production from cassava starch using a highly productive strain of Zymomonas mobilis and Saccharomyces uvarum ATCC 26602. Biomass. 7 (1985) 171–183

    Google Scholar 

  4. Pazur, J. H.; Ando, T.: The hydrolysis of glucosyl oligosaccharides with α-D-(1→4) and α-D-(1→6) bonds by fungal amyloglucosidase. J. Biol. Chem. 235 (1960) 297–302

    Google Scholar 

  5. Norman, B. E.: The application of polysaccharide degrading enzymes in the starch industry. In: Berkeley, R. C. W.; Gooday, G. W.; Ellwood, D. C. (Eds.): Microbial Polysaccharides and Polysaccharases, pp. 339–376. New York: Academic Press 1979

    Google Scholar 

  6. Ghosh, P.; Pamment, N. B.; Martin, W. R. B.: Simultaneous saccharification and fermentation of cellulose: Effect of β-D-glucosidase activity and ethanol inhibition of cellulases. Enzyme Microb. Technol. 4 (1982) 425–430

    Google Scholar 

  7. Asenjo, J. A.: Modelling the bioconversion of cellulose into microbial products: Rate limitations. Process Biochem. 19 (1984) 217–224

    Google Scholar 

  8. Lee, G. M.; Kim, C. H.; Zainal, A.; Han, M. H.; Rhee, S. K.: Sago starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis. J. Chem. Tech. Biotechnol. 38 (1987) 235–242

    Google Scholar 

  9. Pazur, J. H.; Kleppe, K.: The hydrolysis of α-D-glucosides by amyloglucosidase from Aspergillus niger. J. Biol. Chem. 237 (1984) 1002–1006

    Google Scholar 

  10. Hiromi, K.: Interpretation of dependency of rate parameters on the degree of polymerization of substrate in enzyme-catalyzed reactions: Evaluation of subsite affinities of exo-enzyme. Biochem. Biophys. Res. Commun. 40 (1970) 1–6

    Google Scholar 

  11. Hiromi, K.; Nitta, Y.; Numata, C.; Ono, S.: Subsite affinities of glucoamylase: Examination of the validity of the subsite theory. Biochim. Biophys. Acta 302 (1973) 362–375

    Google Scholar 

  12. Tanaka, A.; Fukuchi, Y.; Ohnishi, M.; Hiromi, K.; Aibara, S.; Morita, Y.: Fractionation of isozymes and determination of the subsite structure of glucoamylase from Rhizopus niveus. Agr. Biol. Chem. 47 (1983) 573–580

    Google Scholar 

  13. Kim, C. H.; Lee, G. M.; Zainal, A.; Han, M. H.; Rhee, S. K.: Immobilization of Zymomonas mobilis and amyloglucosidase for ethanol production from sago starch. Enzyme Microb. Technol. 10 (1988) 426–430

    Google Scholar 

  14. Ono, S.; Hiromi, K.; Zinbo, M.: Kinetic studies on gluc-amylase. I. The influence of chain length of linear substrates on the rate parameters. J. Biochem. 55 (1964) 315–320

    Google Scholar 

  15. Hiromi, K.; Hamauzu, Z.; Takahashi, K.; Ono, S.: Kinetic studies on gluc-amylase. II. Competition between two types of substrate having α-1,4 and α-1,6 glucosidic linkage. J. Biochem. 59 (1966) 411–418

    Google Scholar 

  16. Hiromi, K.; Takahashi, K.; Hamauzu, Z.; Ono, S.: Kinetic studies on gluc-amylase. III. The influence of pH on the rates of hydrolysis of maltose and panose. J. Biochem. 59 (1966) 469–475

    Google Scholar 

  17. Hiromi, K.; Kawai, M.; Ono, S.: Kinetic studies on gluc-amylase. IV. Hydrolysis of isomaltose. J. Biochem. 59 (1966) 476–480

    Google Scholar 

  18. Abduliah, M.; Fleming, I. D.; Taylor, P. M.; Whelan, W. J.: Substrate specificity of the amyloglucosidase of Aspergillus niger. Biochem. J. 89 (1963) 359–369

    Google Scholar 

  19. Kuo, S. S.: In: Computer applications of numerical methods. Massachusetts: Addison-Wesley Publishing Company, Inc. 1972

    Google Scholar 

  20. Levenspiel, O.: The Monod equation: A revisity and a generalization to product inhibition situations. Biotechnol. Bioeng. 22 (1980) 1671–1687

    Google Scholar 

  21. Ghose, T. K.; Tyagi, R. D.: Rapid ethanol fermentation of cellulose hydrolysate. II. Product and substrate inhibition and optimization of fermentor design. Biotechnol. Bioeng. 21 (1979) 1401–1420

    Google Scholar 

  22. Bazua, C. D.; Wilke, C. R. P.: Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. No. 7 (1977) 105–118

  23. Leudeking, R.; Piret, E. L.: A kinetic study of the lactic acid fermentation: Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1 (1959) 393–412

    Google Scholar 

  24. Rogers, P. L.; Lee, K. J.; Tribe, D. E.: Kinetics of alcohol production by Zymomonas mobilis at high sugar concentrations. Biotechnol. Lett. 1 (1979) 165–170

    Google Scholar 

  25. Tan, K.: Sago production in southwest peninsular Malaysia. In: Stanton, W. R.; Flach, M. (Eds.): Proceedings of the Second International Sago Symposium, pp. 56–83. The Hague/Boston/London: Martinus Nijhoff Publishers 1980

    Google Scholar 

  26. Rhee, S. K.; Lee, G. M.; Han, Y. T.; Zainal, A.; Han, M. H.; Lee, K. J.: Ethanol production from cassava and sago starch using Zymomonas mobilis. Biotechnol. Lett. 6 (1984) 615–620

    Google Scholar 

  27. Novo Industri Enzyme Information. File Number A5170-GB (1972)

  28. Lee, K. J.; Rogers, P. L.: The fermentation kinetics of ethanol production by Zymomonas mobilis. Chem. Eng. J. 27 (1983) 831–838

    Google Scholar 

  29. Hyung, S. Y.; Chen, J. C.: Analysis of the kinetics of ethanol fermentation with Zymomonas mobilis considering temperature effect. Enzyme Microb. Technol. 10 (1988) 431–439

    Google Scholar 

  30. Jobses, I. M. L.; Roels, J. A.: The inhibition of the maximum specific growth and fermentation rate of Zymomonas mobilis by ethanol. Biotechnol. Bioeng. 28 (1986) 554–563

    Google Scholar 

  31. Jobses, I. M. L.; Egberts, G. T. C.; Luyben, K. C. A. M.; Roels, J. A.: Fermentation kinetics of Zymomonas mobilis at high ethanol concentrations: Oscillations in continuous cultures. Biotechnol. Bioeng. 28 (1986) 868–877

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C.G., Kim, C.H. & Rhee, S.K. A kinetic model and simulation of starch saccharification and simultaneous ethanol fermentation by amyloglucosidase and Zymomonas mobilis. Bioprocess Engineering 7, 335–341 (1992). https://doi.org/10.1007/BF00369488

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369488

Keywords

Navigation