Skip to main content
Log in

Kinetics of ethanol production by baker's yeast in an integrated process of fermentation and microfiltration

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The productivity of a fermentation is proportional to the biomass concentration. The productivity can therefore be increased by retention of the cells in the fermentor. In this study microfiltration was used for cell retention in a fermentation of glucose to ethanol by baker's yeast. Compared to a system without cell retention the productivity could be increased 12-fold to 55 kg/m3 h at a biomass concentration of 135 kg/m3. Maximal ethanol concentrations of 76 kg/m3 were obtained at conditions of growth. At zero growth conditions in the integrated system the ethanol concentration could be increased to about 115 kg/m3, and could be produced for at least 10 hours. The fermentation results in the integrated system could be described reasonably well with a mathematical model based on a different linear inhibition kinetics for growth and substrate consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C kg m−3 :

Concentration

D h−3 :

Dilution rate

K s kg m−3 :

Monod constant

M kg kmol−1 :

Molar mass based on carbon equivalents [16]

m s kg kg−1h−1 :

Maintenance coefficient

n :

Exponent in equation for specific growth rate

q s kg kg−1 h−1 :

Specific substrate consumption rate

r kg m−3 h−1 :

Production or consumption rate

Y sx kg kg−1 :

Yield of biomass on substrate

Y sp kg kg−1 :

Yield of product on substrate

γ :

Degree of reduction

μ h−1 :

Growth rate

in :

inlet

m :

medium (filtrate)

max :

maximal

p :

product

s :

substrate

x :

biomass

1:

first fermentor

2:

second fermentor

References

  1. Godia, F.; Casas, C.; Sola, C.: A survey of continuous ethanol fermentation systems using immobilized cells. Proc. Biochem. 22 (1987) 43–48

    Google Scholar 

  2. Nagashima, M.; Azuma, M.; Noguchi, S.; Inuzaka, K.; Samejima, H.: Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26 (1984) 992–997

    Google Scholar 

  3. Cheryan, M.; Mehaia, M. A.: Ethanol production in a membrane recycle bioreactor. Conversion of glucose using Saccharomyces cerevisiae. Proc. Biochem. 19 (1984) 204–208

    Google Scholar 

  4. Lee, C. W.; Chang, H. N.: Kinetics of ethanol fermentation in membrane cell recycle fermentors. Biotechnol. Bioeng. 29 (1987) 1105–1112

    Google Scholar 

  5. Tegtmeier, U.: Einsatz von Mikrofiltrationsmembranen zur Zellrückhaltung in einem kontinuierlichen Fermentationsprozeß. Report GVC VDI-Meeting 1988, Heidelberg, Germany

  6. Bu'Lock, J. D.; Comberbach, D. M.; Ghommidh, C.: A study of continuous ethanol production using a highly flocculent yeast in the gas lift tower fermentor. Chem. Eng. J. 29 (1984) B9-B24.

    Google Scholar 

  7. Comberbach, D. M.; Ghommidh, C.; Bu'Lock, J. D.: Steady state stability and dynamic behavior of continuous ethanol fermentation at high cell densities. Enz. Microb. Technol. 9 (1987) 676–684

    Google Scholar 

  8. Deger, H. M.; Dorsemagen, B.; Hofer, N.; Klein, M.; Wöhner, G.: Kontinuierliche Gewinnung von Gärungsalkohol: Ein neues, großtechnisch erprobtes Verfahren. Chem.-Ing.-Tech. 59 (1987) 865–867

    Google Scholar 

  9. Cysewski, G. R.; Wilke, C. R.: Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol. Bioeng. 19 (1977) 1125–1143

    Google Scholar 

  10. Brochures on the Biostil process, Alfa Laval, Tumba, Sweden

  11. Daugulis, A. J.; Swaine, D. E.; Kollerup, F.; Groom, C. A.: Extractive fermentation — integrated reaction and product recovery. Biotechnol. Letts. 9 (1987) 425–430

    Google Scholar 

  12. Calibo, R. L.; Matsumara, M.; Kataoka, H.: Continuous ethanol fermentation of concentrated sugar solutions coupled with membrane distillation using a PTFE module. J. Ferm. Bioeng. 67 (1989) 40–45

    Article  Google Scholar 

  13. Bazua, C. D.; Wilke, C. R.: Ethanol effects on the kinetics of a continuous fermentation with Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. Ser. 7 (1977) 105–118

    Google Scholar 

  14. Levenspiel, O.: The Monod equation: A revisit and a generalization to product inhibition situations. Biotechnol. Bioeng. 22 (1980) 1671–1687

    Google Scholar 

  15. Warren, R. K.; Hill, G. A.; Macdonald, D. G.: Improved bioreaction kinetics for the simulation of continuous ethanol fermentation by Saccharomyces cerevisiae. Biotechnol. Prog. 6 (1990) 319–325

    Google Scholar 

  16. Roels, J. A.: Energetics and kinetics in biotechnology (1983), Elsevier Biomedical Press, Amsterdam, N.Y., Oxford

    Google Scholar 

  17. Monbouquette, H. G.: Models for high cell density reactors must consider biomass volume fraction: Cell recycle example. Biotechnol. Bioeng. 29 (1987) 1075–1080

    Google Scholar 

  18. Luong, J. H. T.: Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol. Bioeng. 27 (1985) 280–285

    Google Scholar 

  19. Hill, G. A.; Robinson, C. W.: A modified Ghose model for batch cultures of Saccharomyces cerevisiae at high ethanol concentrations. Chem. Eng. J. 44 (1990) B69-B80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groot, W.J., Sikkenk, C.M., Waldram, R.H. et al. Kinetics of ethanol production by baker's yeast in an integrated process of fermentation and microfiltration. Bioprocess Eng. 8, 39–47 (1992). https://doi.org/10.1007/BF00369262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369262

Keywords

Navigation