Marine Geophysical Researches

, Volume 9, Issue 2, pp 165–194 | Cite as

Thermal evolution of the western Svalbard margin

  • K. Crane
  • E. Sundvor
  • J. -P. Foucher
  • M. Hobart
  • A. M. Myhre
  • S. LeDouaran


The northern Norwegian-Greenland Sea opened up as the Knipovich Ridge propagated from the south into the ancient continental Spitsbergen Shear Zone. Heat flow data suggest that magma was first intruded at a latitude of ≈75° N around 60 m.y.b.p. By 40–50 m.y.b.p. oceanic crust was forming at a latitude of 78° N. At ≈12 m.y.b.p. the Hovgård Transform Fault was deactivated during a northwards propagation of the Knipovich Ridge. Spreading is now in its nascent stages along the Molloy Ridge within the trough of the Spitsbergen Fracture Zone. Spreading rates are slower in the north than the south. For the Knipovich Ridge at 78° N they range from 1.5–2.3 mm yr-1 on the eastern flank to 1.9–3.1 mm yr-1 on the western flank. At a latitude of 75° N spreading rates increase to 4.3–4.9 mm yr-1.

Thermal profiles reveal regions of off-axial high heat flow. They are located at ages of 14 m.y. west and 13 m.y. east of the northern Knipovich Ridge, and at 36 m.y. on the eastern flank of the southern Knipovich Ridge. These may correspond to episodes of increased magmatic activity; which may be related to times of rapid north-wards rise axis propagation.

The fact that the Norwegian-Greenland Sea is almost void of magnetic anomalies may be caused by the chaotic extrusion of basalts from a spreading center trapped within the confines of an ancient continental shear zone. The oblique impact of the propagating rift with the ancient shear zone may have created an unstable state of stress in the region. If so, extension took place preferentially to the northwest, while compression occurred to the southeast between the opening, leaking shear zone and the Svalbard margin. This caused faster spreading rates to the northwest than to the southeast.


transform margins heat flow ridge propagation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AlvarezF., 1984, Etude de l'evolution thermique des Bassins Sedimentaires formes par extension. Consequences thermomecaniques du rifting. Applications a Graben Viking (Mer du Nord) Diplome de Docteur de 3eme Cycle Univ. Pierre et Marie Curie, Paris 6, France.Google Scholar
  2. BeaumontC., KeenC. E., and BoutilierR., 1982, On the Evolution of Rifted Continental Margins: Comparison of Models and Observations for the Nova Scotian Margin, Geophys. J. R. Astr. Soc. 70, 667–715.Google Scholar
  3. BenfieldA. E., 1949, The Effect of Uplift and Denudation on Underground Temperatures, J. App. Phys. 20, 66–70.Google Scholar
  4. BonattiE. and CraneK., 1982, Oscillatory Spreading Explanation of Anomalously Old Uplifted Crust near Oceanic Transforms, nature 300, 343.Google Scholar
  5. BonattiE. and CraneK., 1984, The Geology of Oceanic Transform Faults, Scientific American 250, 5, 40–51.Google Scholar
  6. CourtillotV., 1982, Propagating Rifts and Continental Breakup, Tectonics 1, 239.Google Scholar
  7. CraneK., EldholmO., MyhreA. M., and SundvorE., 1982, Thermal Implications for the Evolution of the Spitsbergen Transform Fault, Tectonophysics 89, 1–32.Google Scholar
  8. Crane, K. and Bonatti, E., 1986, Fracture Zone Control on the Opening of the Red Sea: SIR A Data, Jour. of the Geological Soc. of London (in press).Google Scholar
  9. EldholmO., VogtP., and PerryR., 1978, Plate Tectonic Development of the Mid-Oceanic Ridge System North of the Jan Mayen Fracture Zone, A: Present Plate Boundaries, EOS 59, 371.Google Scholar
  10. EldholmO. and SundvorE., 1980, The Continental Margins of the Norwegian-Greenland Sea: Recent Results and Outstanding Problems, Royal Society of London Phil. Trans., Ser. A, 294, 77–86.Google Scholar
  11. Eldholm, O., Sundvor, E., Myhre, A. M., and Faleide, J. I., 1984, Cenozoic Evolution of the Continental Margin off Norway and Western Svalbard, Petroleum Geology of the North European Margin. Norwegian Petroleum Society, Graham and Trotman, pp. 3–18.Google Scholar
  12. Eldholm, O., Karasik, A. M., and Reksnes, P. A., 1986, The North American Plate Boundary, DNAG synthesis. Volume Geology of the Arctic Ocean Region Chapter 12.Google Scholar
  13. HorsfieldW. T. and MatonP. I., 1970, Transform Faulting along the De Geer Line, Nature 226, 256–257.Google Scholar
  14. HutchinsonI., 1985, The Effects of Sedimentation and Compaction on Oceanic Heat Flow, Geophys. J. R. Astr. Soc. 82, 439–459.Google Scholar
  15. JacksonH. R., JohnsonG. L., SundvorE., and MyhreA. M., 1984, The Yermak Plateau: Formed at a Triple Junction, J. Geophys. Research 89, B5, 3223–3232.Google Scholar
  16. JohnsonL and HeezenB. C., 1967, Morphology and Evolution of the Norwegian-Greenland Sea, Deep-Sea Research 14, 755–771.Google Scholar
  17. JohnsonG. L., 1969, Morphology of Eurasian-Arctic Basin, Polar Record 14, 619–628.Google Scholar
  18. KovacsL. C. and VinkG. E., 1984, New Aeromagnetic Data from the High Arctic and Norwegian-Greenland Sea; EOS 65, 199.Google Scholar
  19. LangsethM. G. and ZielinskiG. W., 1974, Marine Heat Flow Measurements in the Norwegian-Greeland Sea and in the Vicinity of Iceland. Geodynamics of Iceland and the North Atlantic Area, D. Reidel Publ. Co., Dordrecht, Holland, pp. 277–295.Google Scholar
  20. LangsethM. G., HobartM. A., and HoraiK., 1980, Heat Flow in the Bering Sea, J. Geophys. Res. 85, 3740–3750.Google Scholar
  21. Langseth, M. G., Lachenbruch, A. H., and Marshall, V. Geothermal Observations in the Arctic Region, DNAG Synthesis Volume, Geology of the Artic Ocean Region (in press).Google Scholar
  22. LeeT.-C. and HenyeyT. L., 1975, Heat Flow Through the Southerm California Borderland, J. Geophys. Res. 80, 26, 3733–3743.Google Scholar
  23. LePichonX. and HayesD. E., 1971, Marginal Offsets, Fracture Zones and the Early Opening of the South Atlantic, J. Geophys. Res. 76, 6294–6308.Google Scholar
  24. Lucazeau, F. and LeDouaran, S., 1985, Numerican Modeling of Sediment Time/Temperature History: Comparison Between the Gulf of Lion and the Viking Graben, Earth and Planet. Sci. Lett. Google Scholar
  25. MyhreA. M. and EldholmO., 1981, Sedimentary and Crustal Velocities in the Norwegian-Greeland Sea, J. Geophys Res. 86, 5012–5022.Google Scholar
  26. MyhreA. M., EldholmO., and SundvorE., 1983, The Margin Between the Senja and Spitsbergen Fracture Zones: Implications from Plate Tectonics, Tectonophysics 89, 1–32.Google Scholar
  27. Myhre, A. M., 1984, The Western Svalbard Margin, (74°–80° N), in Marine Geophysical Studies in the Norwegian-Greeland Sea and Adjacent Margins, Dr. Scient. Thesis, Univ. of Oslo.Google Scholar
  28. Nunns, A. G., 1981, Plate Tectonic Evolution of the Greeland-Scotland Ridge and Surrounding Regions: Structure and Development of the Greenland-Scotland Ridge, M. H. P. Bott, S. Saxov, M. Talwani, and J. Thiede (eds.), NATO Conference Series, IV, 685 p.Google Scholar
  29. OhtaY., 1982, Morphotectonic Studies Around Svalbard and the Northernmost Atlantic; Canadian Society of Petroleum Geologists, Memoir 8, 415–429.Google Scholar
  30. ParsonsB. and SclaterJ. G., 1977, An Analysis of the Variation of Ocean Floor Bathymetry and Heat Flow with Age, J. Geophys. Res. 82, 803–827.Google Scholar
  31. PerryR. K., FlemingH. S., CherkisN. Z., FedenR. H., and VogtR. R., 1980, Bathymetry of the Norwegian-Greenland and Western Barents Seas, U.S. Naval Res. Lab., Acoustic Div., Washington, D.C.Google Scholar
  32. RabinowitzP. D. and LaBrecqueJ. L., 1979, The Mesozoic South Atlantic Ocean and Evolution of its Continental Margins, J. Geophys. Res. 84, 5973–6002.Google Scholar
  33. RubeyW. W. and HubbertM. K., 1960, Role of Fluid Pressure in Mechanics of Overthrust Faulting. II. Overthrust Belt in Geosynclinal Area of Western Wyoming in Light of Fluid Pressure Hypothesis, Bull. Geol. Soc. Am. 60, 167–205.Google Scholar
  34. SavostinL. A. and KarasikA. M., 1981, Recent Plate Tectonics of the Arctic Basin and of Northeastern Asia, Tectonophysics 74, 111–145.Google Scholar
  35. SclaterJ. G. and FrancheteauJ., 1970, The Implication of Terrestrial Heat Flow Observations in Current Tectonic and Geochemical Models of the Crust and Upper Mantle of the Earth, Geophys. J. Roy. Astron. Soc. 20, 509–542.Google Scholar
  36. SundvorE., EldholmO., GidskehaugA., and MyhreA. M., 1977, Marine Geophysical Survey on the Western and Northern Continental Margin off Svalbard, Univ. Bergen Seismol. Obs., Sci. Rep. 4, 35.Google Scholar
  37. SundvorE. and EldholmO., 1979, The Western and Northern Margin off Svalbard, Tectonophysics 59, 239–250.Google Scholar
  38. SundvorE., MyhreA. M., and EldholmO., 1979, The Svalbard Continental Margin, Nor. Sea Symp. Nor. Pet. Soc., NSS 6: 1–25.Google Scholar
  39. TalwaniM. and EldholmO., 1977, Evolution of the Norwegian-Greenland Sea, Geol. Soc. America Bull. 88, 969–999.Google Scholar
  40. VogtP. R., JohnsonG. L., and KristjanssonL., 1980, Morphology and Magnetic Anomalies North of Iceland, Geophys. J., 47, 61–66.Google Scholar
  41. Vogt, P. R., Perry, R. K., Feden, R. H., Fleming, H. S., and Cherkis, N. Z., 1981, ‘The Greenland-Norwegian Sea and Iceland Environment: Geology and Geophysics’, in The Ocean Basins and Margins, 5, Nairn, A. E. M. and Churkin, M. (eds.), pp. 493–598.Google Scholar
  42. ZielinskiG. W., 1979, On the Thermal Evolution of Passive Continental Margins, Thermal Depth Anomalies, and the Norwegian-Greenland Sea, J. Geophys. Res. 84, 7577–7588.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • K. Crane
    • 1
    • 2
  • E. Sundvor
    • 3
  • J. -P. Foucher
    • 4
  • M. Hobart
    • 2
  • A. M. Myhre
    • 5
  • S. LeDouaran
    • 6
  1. 1.Dept. of Geology and GeographyHunter College, CUNY 695N. Y.USA
  2. 2.Lamont-Doherty Geological ObservatoryPalisadesUSA
  3. 3.Seismological Observatory, Allegaten 41Univ. of BergenBergenNorway
  4. 4.IFREMERCentre de BrestBrestFrance
  5. 5.Department of GeologyUniversity of OsloOslo 3Norway
  6. 6.Societe Nationale Elf AquitaineParis, La DefenseFrance

Personalised recommendations