Skip to main content
Log in

A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A theoretical equation for comparison of the bioreaction rates in a biofilm reactor and in a bioreactor with free suspended cells at different input substrate concentrations and substrate conversions is proposed. The main assumption is that there is no kinetic change after fixation of the cells. Some previously published experimental data are used for verification of this equation. It is shown that difference between the experimental and calculated data is within 19%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, B.: Biochemical reactors. London: Pion Press 1975

    Google Scholar 

  2. Atkinson, B.: Immobilized biomass — a basis for process development in wastewater treatment. In: Cooper, P. F.; Atkinson, B. (Eds.): Biological fluidized bed treatment of water and wastewater, pp. 22–34. Chichester: Ellis Horwood 1981

    Google Scholar 

  3. Shieh, W. K.; Mulcahy, L.; LaMotta, E. J.: Second World Congress on Chemical Engineering, pp. 165–170. Montreal, Canada 1981.

  4. Adler, I.: Proc. 4th Eur. Congr. on Biotechnology, vol. 1, p. 1. Amsterdam, The Netherlands 1987

    Google Scholar 

  5. Olem, H.; Unz, R. F.: Acid mine drainage treatment with rotating biological contactors. Biotechnol. Bioeng. 19 (1977) 1475–1491

    Google Scholar 

  6. Endo, I.; Nagamune, T.; Kalo, N.; Nishimura, M.; Kobayashi, T.: A new cultivation method of fungi or mycelia. Bioprocess Eng. 3 (1988) 63–68

    Google Scholar 

  7. Oh, D. K.; Hyun, C. K.; Kirn, J. H.; Park, Y. H.: Production of penicillin in a fluidized bed bioreactor. Biotechnol. Bioeng. 32 (1988) 569–573

    Google Scholar 

  8. Crouch, C. F.; Fowler, H. F.; Spier, R. E.: The adhesion of animal cells to surfaces. J. Chem. Tech. Biotechnol. 35 B (1985) 273–281

    Google Scholar 

  9. Navarro, J. M.; Durand, G.: Modification of yeast metabolism by immobilization onto porous glass. Eur. J. Appl. Microbiol. 4 (1977) 243–254

    Google Scholar 

  10. Bakke, R.; Trulear, M. G.; Robinson, J. A.; Characklis, W. G.: Activity of Pseudomonas aeruginosa in biofilms: Steady state. Biotechnol. Bioeng. 26 (1980) 1418–1424

    Google Scholar 

  11. Wichlacz, P. L.; Unz, R. F.: Growth kinetics of attached ironoxidizing bacteria. Appl. Env. Microbiol. 50 (1985) 460–467

    Google Scholar 

  12. Jones, C. A.; Kelly, D. P.: Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture. J. Chem. Technol. Biotechnol. 33 B (1983) 241–261

    Google Scholar 

  13. McDonald, D. G.; Clark, R. F.: The oxidation of aqueous ferrous sulfate by Thiobacillus ferrooxidans. Can. J. Chem. Eng. 48 (1970) 669–676

    Google Scholar 

  14. Lacey, D. T.; Lawson, F.: Kinetics of the liquid phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotechnol. Bioeng. 12 (1976) 29–50

    Google Scholar 

  15. Torma, A. E.: The role of Thiobacillus ferrooxidans in hydrometallurgical processes. Adv. Biochem. Eng. 6 (1977) 1–37

    Google Scholar 

  16. Nikolov, L.; Kolev, S.: Investigation on the type of flow pattern in a rotating biological contactor. Chem. Biochem. Eng. 1 (1987) 39–41

    Google Scholar 

  17. Chang, H. N.; Moo-Young, M.: Estimation of oxygen penetration depth in immobilized cells. Appl. Microbiol. Biotechnol. 29 (1988) 107–112

    Google Scholar 

  18. Capdeville, B.: Contribution a la modélisation et au calcul des réacteurs a disques biologiques. Thèse de docteur ingenieur. UPS, Toulouse, France 1978

    Google Scholar 

  19. Mulcahy, L. T.; LaMotta, E. J.: Mathematical model of fluidized bed biofilm reactor. Paper presented at the 51st WPCF Conf. Anaheim, USA 1976

  20. Nikolov, L.; Karamanev, D.: Experimental study of inverse fluidized bed biofilm reactor. Can. J. Chem. Eng. 65 (1987) 214–218

    Google Scholar 

  21. Nikolov, L.; Karamanev, D.; Elenkov, D.: Bulg. Pat. no. 32910 (1981)

  22. Monod, J.: La technique de culture continue. Théorie et applications. Ann. Inst. Pasteur. 79 (1950) 390–410

    Google Scholar 

  23. Karamanev, D.; Nikolov, L.: Influence of some physico-chemical parameters on bacterial activity of biofilm. Biotechnol. Bioeng. 31 (1988) 295–299

    Google Scholar 

  24. Chavarie, C.; Karamanev, D.: Use of inverse fluidization in biofilm reactors. Int. Symp. on Bioreactor Fluid Dynamics, pp. 181–190. Cambridge, England 1986

  25. Ramsay, B.; Ramsay, J.; de Tremblay, M.; Chavarie, C.: A method for quantification of bacterial protein in the presence of Jarosite. Geomicrobiol. J. 6 (1988) 171–177

    Google Scholar 

  26. Chavarie, C. et al.: La modélisation, design et scale-up des bioreacteurs à biofilm à fluidisation inversée. Rapport, Project CDT P1048. Ecole Polytechnique de Montreal, Canada (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamanev, D.G., Nikolov, L.N. A comparison between the reaction rates in biofilm reactors and free suspended cells bioreactors. Bioprocess Engineering 6, 127–130 (1991). https://doi.org/10.1007/BF00369066

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369066

Keywords

Navigation