Skip to main content
Log in

Application of fuzzy multiobjective optimization for self-sucking impellers in a bioreactor

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

For three types of self-sucking impellers (fourand six-pipe and disk impellers) mixing power, initial point, amount of gas leaving the impeller and mass transfer coefficient were determined experimentally. Investigations were performed for two systems: water and biomass solution.

From the point of view of a minimum mixing power and maximum mass transfer coefficient the best impeller has been chosen. Fuzzy multiobjective optimization for determination of optimum operating conditions is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

concentration of oxygen

D :

tank diameter

d :

impeller diameter

g :

acceleration of gravity

H :

height of liquid in the tank

H′ :

height of liquid above impeller, H′=H-y

k :

consistency coefficient

k L a :

volumetric mass transfer coefficient

N :

rotational speed of impeller

n :

flow behaviour index

P :

mixing power for pure liquid

P G :

mixing power for aerated liquid

V G :

volumetric air flow rate

y :

distance of impeller from the tank bottom

v a :

apparent kinematic viscosity of liquid

ϱ :

density of liquid

τ :

time

Φ :

gas hold-up

Eu=P/N 3 d 5 ϱ or EuG=P G /N 3 d 5 ϱ :

Euler Number for non-gassed or aerated liquid

Fr=N 2 d/g :

Froude Number

Fr*=N 2 d 2/g(H -y) :

modified Froude Number

KG=V G /N d 3 :

gas flow number

Re=N d 2/v a :

Reynolds Number

Sh=k K a/(g 2/v a )1/3 :

Sherwood Number

References

  1. Schügerl, K.: Neue Bioreaktoren für aerobe Processe. Chem. Ing. Techn. 52 (1980) 951–965

    Google Scholar 

  2. Henzler, H. J.: Verfahrenstechnische Auslegungsunterlager für Rührbehälter als Fermenter. Chem. Ing. Techn. 54 (1982) 461–478

    Google Scholar 

  3. Oldshue, J. Y.: Transport Phenomena, Reactor Design and Scale-up. Biotech. Advs. 3 (1985) 219–235

    Google Scholar 

  4. Zlokarnik, M.: Rührtechnik (in: Ulmans Encyklopädie I/2). Weinheini: Verlag Chemie 1972

    Google Scholar 

  5. Clark, P.; Westerberg, A. W.: Optimization for Design Problems Having More Than One Objective Comp. & Chem. Engng 7 (1983) 259–278

    Google Scholar 

  6. Zeleny, M.: Multiple Criteria Decision Making. New York: McGraw-Hill 1982

    Google Scholar 

  7. Hwang, Ch.-L.; Masud, A. S. Md.: Multiple Objective Decision Making — Methods and Applications. A State of the Art Survey. Berlin, Heidelberg, New York: Springer Verlag 1979

    Google Scholar 

  8. Goicoecha, A. etal.: Multiobjective Decision Analysis with Engineering and Business Applications. New York: John Wiley, 1982

    Google Scholar 

  9. Grauer, M. et al.: Multiple Objective Decision Analysis Applied to Chemical Engineering. Comp. & Chem. Engng 8 (1984) 285–293

    Google Scholar 

  10. Kraslawski, A.; Górak, A.: Optimization of a Distillation Column: Fuzzy Multiobjective Approach, I. Chem. Symp. Ser., No. 104 B335–B345

  11. Umeda, T. et al.: Interactive Solution to Multiple Criteria Problems in Chemical Process Design. Comp. & Chem. Engng 1 (1980) 157–165

    Google Scholar 

  12. Kacprzyk, J.: Multistage Decision Making Under Fuzziness. Köln: Verlag TÜV Rheinland 1983

    Google Scholar 

  13. Dubois, D.; Prade, H.: Fuzzy Sets and Systems. New York: Academic Press, 1980

    Google Scholar 

  14. Kickert, W. J. M.: Fuzzy Theories on Decision Making. The Hague: Nijhoff 1978

    Google Scholar 

  15. Dohnal, M.: Fuzzy Models of Unit Operations. Chem. & Eng. Commun. 19 (1982) 129–139

    Google Scholar 

  16. Dohnal, M.: Fuzzy Flowsheeting. Chem. Eng. J. 30 (1985) 71–79

    Google Scholar 

  17. Dohnal, M.: Fuzzy Set Theory: Basic Concepts and Applications, XVIII. Congress: The Use of Computers in Chemical Engineering, Giardini Naxos, Italy, 1987

    Google Scholar 

  18. Turunen, I. et al.: Fuzzy Modelling in Biotechnology: Sucrose Inversion. Chem. Eng. J. 30 (1985) B51-B60

    Google Scholar 

  19. Patent, PL Nr 148476

  20. Nagata, S.: Mixing: Principles and Application. New York: J. Wiley 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krasławski, A., Rzyski, E. & Stelmach, J. Application of fuzzy multiobjective optimization for self-sucking impellers in a bioreactor. Bioprocess Engineering 6, 109–116 (1991). https://doi.org/10.1007/BF00369063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00369063

Keywords

Navigation