Journal of Materials Science

, Volume 29, Issue 6, pp 1569–1574 | Cite as

Embrittlement of nanocrystalline nickel by liquid metals

  • V. I. Igoshev
  • L. G. Rogova
  • L. I. Trusov
  • T. P. Khvostantseva


Metallographic and fractographic tests of liquid metal embrittlement are performed for nanocrystalline Ni-Hg systems. It is shown that the behaviour of nanocrystalline nickel under these conditions is close to that of ordinary polycrystalline materials. The presence of a stage of subcritical crack growth is demonstrated. As nanocrystalline grains have none of their own intrinsic dislocations, it is assumed that subcritical crack growth in liquid metal environment can be realized through the mechanism of dissolution of atoms from the crack tip. This dissolution-condensation model of liquid metal embrittlement, developed for polycrystals, can also be applied to nanocrystals.


Polymer Nickel Liquid Metal Material Processing Polycrystalline Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Likhtman, E. D. Shykin and P. A. Pebinder, in “Physical-chemical mechanics of materials” (Izdatelstvo AN USSR, Moscow, 1962) p. 303.Google Scholar
  2. 2.
    W. Rostoker, J. M. Maccaughey and M. Markus, in “Embrittlement by liquid metals” (Van Nostrand-Reinhold, New York, 1960) p. 162.Google Scholar
  3. 3.
    W. W. Robertson, Trans. AIME 236 (1966) 1478.Google Scholar
  4. 4.
    E. E. Glickman, J. V. Gorjnov, V. M. Demin and K. J. Sapichev, Izvestiya VUZOV (USSR) 5 (1976) 7.Google Scholar
  5. 5.
    E. E. Glickman and J. V. Gorjnov, Vestnic MGU (USSR) 18 (1977) 551.Google Scholar
  6. 6.
    V. V. Popovich, Phys.-Chem. Mech. Mater. (USSR) 5 (1979) 4.Google Scholar
  7. 7.
    S. P. Lynch, Acta Met. 36 (1988) 2639.CrossRefGoogle Scholar
  8. 8.
    R. Armstrong, et al. Phil Mag. 7 (1962) 45.CrossRefGoogle Scholar
  9. 9.
    V. N. Lapovok, V. I. Novikov, S. V. Svirida, A. N. Semenikhin and L. I. Trusov, Phys. metals (USSR) 57 (1984) 718.Google Scholar
  10. 10.
    L. I. Trusov, V. I. Novikov, I. A. Repin, E. E. Kazilin and V. Y. Ganelin, Metallophysics (USSR) 10 (1988) 104.Google Scholar
  11. 11.
    V. G. Gryaznov, I. A. Polonsky, A. E. Romanov and L. I. Trusov, Phys. Rev. B 44 (1991) 42.CrossRefGoogle Scholar
  12. 12.
    M. Hansen in “Constitution of binary alloys” (McGraw-Hill, New York, 1958) p. 1315.Google Scholar
  13. 13.
    C. E. Price and J. K. Good, Trans. ASME 106 (1984) 184.Google Scholar
  14. 14.
    S. P. Lynch, J. Mater. Sci. 21 (1986) 692.CrossRefGoogle Scholar
  15. 15.
    L. G. Khvostantsev, et al. High Temp.-High Press. 9 (1977) 637.Google Scholar
  16. 16.
    O. N. Pomaniv and G. N. Nikiforchin, in “Mechanics of corrosion failure of constructional alloys”, (Moscow, Metallurgiya, 1980) p. 240.Google Scholar
  17. 17.
    J. F. Knott, “Fundamentals of fracture mechanics”, (Butterworths, London, 1973) p. 273.Google Scholar
  18. 18.
    H. J. Hofler and R. S. Averback, Scripta. Met. 24 (1990) 240.Google Scholar
  19. 19.
    P. Gordon, Metal. Trans. 9A (1978) 267.CrossRefGoogle Scholar
  20. 20.
    D. Felloyz (ed) “Metals Handbook”, 8th Edition, Vol. 9, “Fractography and Atlas of Fractographs ASM” (Metals Park, Ohio, 1980) p. 782.Google Scholar
  21. 21.
    V. I. Igoshev, V. A. Soldatenkov and S. I. Utkin in “Intercrystalline brittleness of steels and alloys” (Izevsk, 1989) p. 73.Google Scholar
  22. 22.
    E. E. Glickman and V. I. Igoshev, in “Kinetics and mechanisms for liquid-metal embrittlement of polycrystalline materials” (Preprint IPTM AN USSR, IFDM, 1991) p. 50.Google Scholar
  23. 23.
    N. A. Gjostein, in “Surfaces and interfaces: chemical and physical characteristics” (Syracuse University Press, 1967) p. 226.Google Scholar
  24. 24.
    H. Gleiter, Prog. Mater. Sci. 33 (1989) 223.CrossRefGoogle Scholar
  25. 25.
    V. N. Lapovok, V. I. Novikov, S. V. Svirida, A. N. Semenikhin and L. I. Trusov. Solid State Physics (USSR) 25 (1983) 1816.Google Scholar
  26. 26.
    H. Leibowitz (ed.) “Fracture”, Vol. 3, “Engineering Fundamentals and Environmental Effects” (Academic Press, New York, 1971) p. 753.Google Scholar
  27. 27.
    S. M. Ohr and S. S. Chang, J. Appl. Phys. 53 (1982) 5645.CrossRefGoogle Scholar
  28. 28.
    I. H. Lin, Mater. Sci. Engng 81 (1986) 325.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • V. I. Igoshev
    • 1
  • L. G. Rogova
    • 1
  • L. I. Trusov
    • 2
  • T. P. Khvostantseva
    • 2
  1. 1.Physics Diagnostic and Modelling InstituteUlyanovskRussia
  2. 2.Scientific Research Enterprise “ULTRAM”MoscowRussia

Personalised recommendations