Skip to main content
Log in

The long-term corrosion of glass by ground-water

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Specimens of corroded soda and potash glasses, which had been exposed to groundwater for periods of up to about 1650 years, have been physically and chemically analysed. The morphology and compositional profiles of their finely laminated weathering crusts were determined by scanning electron microscopy and electron-probe microanalysis. It is shown that the surface layers on all specimens are depleted, to varying extents, of their principal constituents, with the exception of Si, Al and Fe. X-ray and electron diffraction studies have revealed the (tentative) identities of complex, poorly crystalline silicates and aluminosilicates within the largely amorphous crusts on potash glasses. The mean thickness of the crusts was found to correlate well with the free energy of hydration, ΔG°, of the pristine glasses. The rate of layer formation on the most durable specimens (ΔG° ≈ −15 kJ mol−1) was about 4 × 10−3 μm year−1. Deposits of calcite, calcium phosphate and manganese rich minerals occurred within the crusts; they were largely of external origin. Thus, in addition to the composition of the glass, the geochemistry of the local groundwater plays a decisive role in determining the identity of the compounds present within the weathering crusts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. LUTZE, in “Radioactive Waste Forms for the Future”, edited by W. LUTZE and R. C. EWING (North-Holland, Amsterdam, 1988) p. 1.

    Google Scholar 

  2. W. L. BOURCIER, Mater. Res. Soc. Symp. Proc. 212 (1991) 3.

    Article  CAS  Google Scholar 

  3. D. BREWSTER, Phil. Trans. R. Soc. Edinb. 23 (1863) 193.

    Article  Google Scholar 

  4. F. RAW, J. Soc. Glass. Technol. 39 (1955) 128T.

    Google Scholar 

  5. W. GEILMANN, Glastech. Ber. 29 (1956) 145.

    CAS  Google Scholar 

  6. R. H. BRILL and H. P. HOOD, Nature 189 (1961) 12.

    Article  Google Scholar 

  7. R. G. NEWTON, Archaeometry 13 (1971) 1.

    Article  Google Scholar 

  8. G. MALOW, Mater. Res. Soc. Symp. Proc. 11 (1982) 25.

    Article  CAS  Google Scholar 

  9. G. A. COX and B. A. FORD, J. Mater. Sci. 24 (1989) 3146.

    Article  CAS  Google Scholar 

  10. G. C. COPPACH, private communication.

  11. G. LOVE, in “Quantitative Electron-Probe Microanalysis”, edited by V. D. SCOTT and G. LOVE (Ellis Horwood, Chichester, 1983) p. 234.

    Google Scholar 

  12. E. R. CALEY, in “Analyses of Ancient Glasses 1790–1957” (Corning Museum of Glass, New York, 1962) p. 93.

    Google Scholar 

  13. K. J. S. GILLIES and A. COX, Glastch. Ber. 61 (1988) 75.

    Google Scholar 

  14. G. A. COX and B. A. FORD, Glass Technol. 30 (1989) 113.

    CAS  Google Scholar 

  15. G. A. COX and A.-R. KHOOLI, ibid. 33 (1992) 60.

    CAS  Google Scholar 

  16. R. G. NEWTON and G. SHAW, ibid. 29 (1988) 78.

    Google Scholar 

  17. A. PAUL, J. Mater. Sci. 12 (1977) 2246.

    Article  CAS  Google Scholar 

  18. R. G. NEWTON and A. PAUL, Glass Technol. 21 (1980) 307.

    CAS  Google Scholar 

  19. C. M. JANTZEN and M. J. PLODINEC, J. Non-Cryst. Solids 67 (1984) 207.

    Article  CAS  Google Scholar 

  20. P. B. ADAMS, ibid. 67 (1984) 193.

    Article  CAS  Google Scholar 

  21. R. H. DOREMUS, ibid. 19 (1975) 137.

    Article  CAS  Google Scholar 

  22. F. M. ERNSBERGER, Phys. Chem. Glasses 21 (1980) 146.

    CAS  Google Scholar 

  23. H. SCHOLZE, Glastech. Ber. 58 (1985) 116.

    CAS  Google Scholar 

  24. R. W. DOUGLAS and T. M. EL-SHAMY, J. Amer. Ceram. Soc. 50 (1967) 1.

    Article  CAS  Google Scholar 

  25. T. M. EL-SHAMY and R.W. DOUGLAS, Glass Technol. 13 (1972) 77.

    CAS  Google Scholar 

  26. C. R. DAS, J. Amer. Ceram. Soc. 63 (1980) 160.

    Article  CAS  Google Scholar 

  27. J. C. DRAN, J. C. PETIT, T. TROTIGNON, A. PACCAGNELLA and G. DELLA MEA, Mater. Res. Soc. Symp. Proc. 127 (1989) 25.

    Article  CAS  Google Scholar 

  28. W. A. LANFORD, K. DAVIS, P. LAMARCHE, T. LAURSEN and G. GROLEAU, J. Non-Cryst. Solids 33 (1979) 249.

    Article  CAS  Google Scholar 

  29. B. GRAMBOW, in “Safety Assessment of Radioactive Waste Repositories, Proceedings of the Symposium, Paris, 1989”, (Organisation for Economic Cooperation and Development, Paris, 1990) p. 439.

    Google Scholar 

  30. C. MACQUET and J. H. THOMASSIN, Appl. Clay Sci. 7 (1992) 17.

    Article  CAS  Google Scholar 

  31. M. J. JERCINOVIC, R. C. EWING and C. D. BYERS, in “Advances in Ceramics, Vol. 20, Nuclear Waste Management II, Chicago 1986”, edited by D. E. Clark, W. B. White and A. J. Machiels (American Ceramic Society, Westerville, OH) p. 671.

  32. J. J. MORGAN and W. STUMM, J. Amer. Water Works Assoc. 57 (1965) 107.

    Article  CAS  Google Scholar 

  33. K. C. MARSHALL, in “Biochemical Cycling of Mineral-Forming Elements” edited by P. A. TRUDINGER and D. J. SWAINE (Elsevier Scientific Publishing, Amsterdam, 1979) p. 261.

    Google Scholar 

  34. J. F. COLLINS and S. W. BUOL, Soil Sci. 110 (1970) 111.

    Article  Google Scholar 

  35. W. L. LINDSAY, in “Chemical Equilibria in Soils” (Wiley Interscience, New York, 1979) Fig. 12.8.

    Google Scholar 

  36. I. C. FREESTONE, N. D. MEEKS and A. P. MIDDLETON, Archaeometry 27 (1985) 161.

    Article  CAS  Google Scholar 

  37. C. D. BYERS, R. C. EWING and M. J. JERCINOVIC in “Advances in Ceramics, Vol. 20, Nuclear Waste Management II, Chicago, 1986”, edited by D. E. Clark, W. B. White and A. J. Machiels (American Ceramic Society, Westerville, OH, 1986) p. 733.

  38. J. F. FLINTOFF and A. B. HARKER, Mater. Res. Soc. Symp. Proc. 44 (1985) 147.

    Article  CAS  Google Scholar 

  39. G. J. MCCARTHY, B. E. SCHEETZ, S. KOMARNENI, D. K. SMITH and W.B. WHITE, in “Solid State Chemistry: A Contemporary Overview”, edited by S. L. Holt, J. B. Milstein and M. Robbins (American Chemical Society Advances in Chemistry Series, 186, 1980) p. 349.

  40. D. SAVAGE, J. E. ROBBINS and R. J. MERRIMAN, Mineral. Mag. 49 (1985) 195.

    Article  CAS  Google Scholar 

  41. J. K. BATES, L. J. JARDINE and M. J. STEINDLER, Science 218 (1982) 51.

    Article  CAS  Google Scholar 

  42. W. LUTZE, in “Radioactive Waste Forms for the Future”, edited by W. LUTZE and R. C. EWING (North-Holland, Amsterdam, 1988) 128.

    Google Scholar 

  43. M. A. COURTY, P. GOLDBERG and R. MACPHAIL, in “Soils and Micromorphology in Archaeology” (Cambridge University Press, Cambridge, 1989) p. 172.

    Google Scholar 

  44. B. GRAMBOW, in “Advances in Ceramics”, Vol. 8, edited by G. G. WICKS and W. A. ROSS (American Ceramic Society, Columbus, OH, 1984) p. 474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cox, G.A., Ford, B.A. The long-term corrosion of glass by ground-water. JOURNAL OF MATERIALS SCIENCE 28, 5637–5647 (1993). https://doi.org/10.1007/BF00367840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367840

Keywords

Navigation