Skip to main content
Log in

High-temperature deformation of solution-treated Al-0.6% Si-1% Mn-0.7 Fe alloy

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The tensile properties of Al-0.6% Si-1% Mn-0.7% Fe alloy were investigated in the temperature range 295–773 K, to assess the effect of the precipitation of Si, Mn and Fe during ageing and deformation on the mechanical properties. The alloy showed a pronounced drop in ductility at elevated temperatures. Elongation-to-fracture versus temperature-of-deformation curves are evaluated as a function of the strain rate. The elevated-temperature yield and ultimate tensile strength (UTS), ductility, strain-rate sensitivity and strain-hardening exponent have a strain-rate dependence. The minimum in the strain-rate sensitivity versus temperature curve is coincident with the elongation minimum temperature. At low and high temperature ranges the flow could be represented by the constitutive equations σ = K 2 εn and σ = K 3 εm, respectively. There is also a discussion of the activation energy for deformation in the vicinity of the ductility minima and from plotting the logarithm of the strain rate versus the reciprocal absolute temperature at a constant yield strength (18 MN m−2). A tentative model based on the diffusion of Si, Fe and Mn in Al and the subsequent precipitation of Si, FeAl3, MnAl6 and α-Al12Mn3Si is postulated to explain the loss in ductility at high temperatures and the corresponding change in strength. An attempt is made to correlate strength, ductility and structural changes at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. HAMMAD, K. A. PADMANABHAN and T. R. ANANTHARAMAN, Trans. Ind. Inst. Metals 30 (1977) 327.

    Google Scholar 

  2. A. M. HAMMAD, K. A. PADMANABHAN, G. V. TENDELOO and T. R. ANANTHARAMAN, Trans. Ind. Inst. Metals, 30 (1977) 338.

    Google Scholar 

  3. A. M. HAMMAD, K. A. PADMANABHAN, G. V. TENDELOO and T. R. ANANTHARAMAN, Z. Metallkde 78 (1987) 103.

    CAS  Google Scholar 

  4. A. M. HAMMAD, K. A. PADMANABHAN, G. V. TENDELOO and T. R. ANANTHARAMAN, Z. Metallkde 78 (1987) 113.

    CAS  Google Scholar 

  5. A. M. HAMMAD, K. K. RAMADAN and M. A. NASR, Z. Metallkde 80 (1989) 173.

    CAS  Google Scholar 

  6. A. M. HAMMAD and K. K. RAMADAN, Z. Metallkde 80 (1989) 178.

    CAS  Google Scholar 

  7. A. M. HAMMAD and K. K. RAMADAN, Z. Metallkde 80 (1989) 431.

    CAS  Google Scholar 

  8. A. M. HAMMAD and O. A. RUGBANI, High Temp. Technol. 8 (1990) 261.

    Article  CAS  Google Scholar 

  9. A. M. HAMMAD, M. A. SHABAN and S. M. SHERIF, J. Mater. Sci. 26 (1991) 6331.

    Article  CAS  Google Scholar 

  10. A. M. HAMMAD, Trans. Ind. Inst. Metals 40 (1987) 39.

    CAS  Google Scholar 

  11. A. M. HAMMAD, Trans. Ind. Inst. Metals 40 (1987) 423.

    CAS  Google Scholar 

  12. A. M. HAMMAD, S. M. EL-MASHRI and M. A. NASR, J. Nucl. Mater. 186 (1992) 166.

    Article  CAS  Google Scholar 

  13. I. A. EL-SHANSHOURY, F. I. GADALLAH and A. M. HAMMAD, J. Nucl. Mater. 42 (1972) 203.

    Article  CAS  Google Scholar 

  14. I. A. EL-SHANSHOURY and F. I. GADALLAH, J. Nucl. Mater. 36 (1970) 87.

    Article  CAS  Google Scholar 

  15. I. A. EL-SHANSHOURY, I. A. VORONIN and M. S. ABDELAZIM, J. Nucl. Mater. 29 (1969) 161.

    Article  CAS  Google Scholar 

  16. G. J. DAVIES, J. W. EDINGTON, C. P. CULTER and K. A. PADMANABHAN, J. Mater. Sci. 5 (1970) 1091.

    Article  CAS  Google Scholar 

  17. P. LUDWIK, “Elemente der technologischen mechanik”, (Springer, Berlin, 1960).

    Google Scholar 

  18. L. F. MONDOLFO, “Aluminium alloys, structure and properties”, (Butterworths, London, 1976) pp. 229, 284.

    Google Scholar 

  19. R. P. ELLIOTT, “Constitution of Binary Alloys”, First Supplement, (McGraw-Hill, New York, 1965) p. 55.

    Google Scholar 

  20. G. J. VANGURP, J. Appl. Phys. 44 (1973) 2040; see also Diffusion Data 7 (1973) 527.

    Article  CAS  Google Scholar 

  21. I. A. HARRIES and P. C. VARELY, J. Inst. Metals 82 (1953–54) 379.

    Google Scholar 

  22. E. R. PETTY, J. Inst. Metals 91 (1962–63) 274.

    Google Scholar 

  23. K. V. RAVI and E. PHILOFSKY, Met. Trans. 2 (1971) 711.

    Article  CAS  Google Scholar 

  24. D. M. R. TAPLIN, The Physical Metallurgy of Fracture, Fourth International Conference on Fracture (University of Waterloo, Canada) 2A (1977).

    Google Scholar 

  25. G. M. HOOD, Phil. Mag. 21 (1970) 305.

    Article  CAS  Google Scholar 

  26. J. W. MARTIN, “Precipitation hardening”, (Pergamon, Oxford, 1968) p. 29.

    Google Scholar 

  27. S. I. HONG, W. S. RYU and C. S. RIM, J. Nucl. Mater. 116 (1983) 314.

    Article  CAS  Google Scholar 

  28. D. LEE, Can. Metall. Quart. 11 (1972) 1321.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammad, A.M., Yousef, Z.M. & El-Nakooh, A. High-temperature deformation of solution-treated Al-0.6% Si-1% Mn-0.7 Fe alloy. JOURNAL OF MATERIALS SCIENCE 28, 5630–5636 (1993). https://doi.org/10.1007/BF00367839

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367839

Keywords

Navigation