Skip to main content
Log in

Microwave characteristics and far-infrared reflection spectra of zirconium tin titanate dielectrics

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The lattice vibrations of zirconium titanate containing SnO2 in solid solution were investigated using Fourier transform-infrared spectrophotometry. Microwave dielectric functions were determined by the Kramers-Kronig analysis followed by the classical dispersion analysis of infrared reflection spectra. The relative tendency of the spectroscopically determined dielectric functions is in agreement with those directly measured. For comparative studies or for the development of new microwave ceramic materials, the method is promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. WOLFRAM and H. E. GÖBEL, Mater. Res, Bull. 16 (1981) 4155.

    Article  Google Scholar 

  2. K. WAKINO, K. MINAI and H. TAMARA, J. Am. Ceram. Soc. 67 (1984) 278.

    Article  CAS  Google Scholar 

  3. M. KATSUBE, Y. ISHIKAWA, H. TAMURA, and K. TOMONO, US Pat. 4102696, 25 July, 1978.

  4. W. E. COURTNEY, IEEE Trans. Microwave Theory Tech. 18 (1970) 476.

    Article  Google Scholar 

  5. K. WAKINO, D. A. SAGALA and H. TAMURA, Jpn J. Appl. Phys. 24 Suppl 24–2 (1985) 1042.

    Article  CAS  Google Scholar 

  6. K. WAKINO and H. TAMURA, Abstract no. 24-E-87, 89th Annual Meeting of the American Ceramic Society, Pittsburgh, PA, USA, 26–30 April, 1987 (unpublished).

  7. R. KUDESIA, PhD thesis, Alfred University, Alfred, USA (1992); R. KUDESIA, R. L. SNYDER, R. A. CONDRATE, SR, and A. E. MCHALE, J. Phys. Chem. Solids 54 (1993) 671.

    Google Scholar 

  8. R. E. NEWNHAM, J. Am. Ceram. Soc. 50 (1967) 216.

    Article  CAS  Google Scholar 

  9. P. BOURDET, A. E. MCHALE, A. SANTORO and R. S. ROTH, J. Solid State Chem. 64 (1986) 30.

    Article  Google Scholar 

  10. W. G. SPITZER, R. C. MILLER, D. A. KLEINMAN and L. E. HOWARTH, Phys. Rev. 126 (1962) 1710.

    Article  CAS  Google Scholar 

  11. W. G. SPITZER and D. A. KLEINMAN, ibid. 121 (1961) 1324.

    Article  CAS  Google Scholar 

  12. A. H. LEE, MS thesis, Alfred University, Alfred, USA (1988).

    Google Scholar 

  13. K. OHTA and H. ISHIDA, Appl. Spectrosc. 42 (1988) 952.

    Article  CAS  Google Scholar 

  14. F. STERN, “Solid State Physics”, Vol. 15 (Academic Press, London, 1963) p. 337.

    Google Scholar 

  15. G. ANDERMANN, A. CARON, and D. A. DOWS, J. Opt. Soc. Am. 55 (1965) 1210.

    Article  CAS  Google Scholar 

  16. R. KUDESIA and A. E. MCHALE, in “Advanced Characterization Techniques for Ceramics”, edited by W. S. YOUNG, G. L. MCVAY, and G. E. PIKE (American Ceramic Society, Westerville, USA, 1990) p. 420.

    Google Scholar 

  17. M. A. KREBS, PhD thesis, Alfred University, Alfred, USA (1982); M. A. KREBS and R. A. CONDRATE, Sr, J. Mater. Sci. Lett. 7 (1988) 1327.

    Google Scholar 

  18. K. WAKINO, “Microwave Characteristics of Zr0.7Sn0.3-Ti1.0O4”, Dielectric Resonator Workshop, Microwave Theory and Techniques, International Symposium, Baltimore, USA, 1986 (unpublished).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudesia, R., McHale, A.E., Condrate, R.A. et al. Microwave characteristics and far-infrared reflection spectra of zirconium tin titanate dielectrics. JOURNAL OF MATERIALS SCIENCE 28, 5569–5575 (1993). https://doi.org/10.1007/BF00367832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367832

Keywords

Navigation