Skip to main content
Log in

Microstructural characterization of CO2 laser welds in the Al-Li based alloy 8090

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructural development of the Al-Li-Cu-Mg-Zr alloy 8090 has been studied after autogenous CO2 laser welding. Sheets ranging in thickness from 1–4 mm were welded at speeds of between 20–120 mm s−1 and powers from 1.5–3.8 kW. Optical microscopy, scanning and transmission electron microscopy were used to study the as-received base metal, the heat-affected zone and the solidified fusion zone. The base metal was supplied in a superplastically formable condition and thus had an unrecrystallized grain structure containing 1–2 μm sized sub-grains with sub-micrometre δ′ and β′ precipitates in the matrix. In the fusion zone, the as-solidified grain structure was columnar at the interface with the base metal but became equiaxed in the central region of the weld pool. The weld depth and top bead width both increased with decreasing welding speed and increasing beam power within the limits investigated. The fusion zone microstructure was cellular-dendritic. Intermetallic precipitates, which are rich in copper, magnesium, silicon (and presumably lithium), formed in the cell/dendrite boundaries. Very fine-scale δ′ precipitates were present in the as-solidified α-Al matrix but there was no evidence for the β′, S′ and T1 phases. The heat-affected zone was only 100 μm wide and was characterized by regions of partial melting. Radiographs of welds reveal that porosity occurred predominantly along the weld centre-line. In partial penetration welds, two types of pores were observed: near spherical and irregular. However, in fully penetrating welds, only the spherical type of porosity was present. Overall volume fractions of porosity were measured from metallographic sections and were found to vary with welding speed and weld type, i.e. partial or full penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. GRIMES, A. J. CORNISH, W. S. MILLER and M. A. REYNOLDS, Met. Mater. 1 (1985) 357.

    CAS  Google Scholar 

  2. P. E. BRETZ and R. G. GILLILAND, Light Met. Age 45 (3–4) (1987), 7.

    Google Scholar 

  3. A. J. CORNISH, A. GRAY, W. S. MILLER and M. A. REYNOLDS, in “Proceedings of the 3rd European Symposium on Spacecraft Materials in Space Environment”, Noordwijk, Netherlands, 1985, pp. 195–201.

  4. J. R. PICKENS, J. Mater. Sci. 25 (1990) 3035.

    Article  CAS  Google Scholar 

  5. R. GRIMES, W. S. MILLER and R. G. BUTLER, J. Phys.(France) 48 (1987) C3–239.

    Google Scholar 

  6. I. J. POLMEAR, “Light Metals” (Edward Arnold, London, 1981) p. 94.

    Google Scholar 

  7. P. A. MOLIAN and T.S. SRIVATSAN, J. Mater. Sci. 25 (1990) 3347.

    Article  CAS  Google Scholar 

  8. D. S. GNANAMUTHU and R. J. MOORES, in E. A. METZBOWER and D. HAUSER (eds), “Power Beam Processing”, (ASM, Metals Park, Ohio, 1989) pp. 181–3.

    Google Scholar 

  9. A. J. SUNWOO and J. W. MORRIS, Metall. Trans. 22A (1991) 903.

    Article  CAS  Google Scholar 

  10. Idem, Weld. J. 69 (1989) 262-S.

  11. B. BIERMANN, R. DIERKEN, R. KUPFER, A. LANG and H. W. BERGMANN, in “Proceedings of the 6th International Al-Li Conference”, October 1991, Garmisch, Germany, to be published.

  12. W. E. QUIST and G. H. NARAYANAN, in “Modern Aluminium Alloys”, edited by A. K. VASUDEVAN and R. D. DOHERTY (Academic Press, New York, 1989) p. 219.

    Google Scholar 

  13. P. J. GREGSON and H. M. FLOWER, Mater. Sci. Technol. 3 (1987) 81.

    Article  Google Scholar 

  14. J. M. SILCOCK, J. Inst. Met. 88 (1959–1960) 357.

    Google Scholar 

  15. F. W. GAYLE and J. B. VANDERSANDE, Scripta Metall. 19 (1984) 473.

    Article  Google Scholar 

  16. N. RYUM, Acta Metall. 17 (1969) 269.

    Article  CAS  Google Scholar 

  17. O. IZUM, ibid. 17 (1969) 619.

    Google Scholar 

  18. R. N. WILSON and P. G. PARTRIDGE, ibid. 13 (1965) 1321.

    Article  CAS  Google Scholar 

  19. W. A. CASSADA, G. J. SHIFLET and E. A. STARKE, Metall. Trans. 22A (1991), 287.

    Article  CAS  Google Scholar 

  20. “Metals Handbook”, 9th Edn, Vol. 9 (ASM International, Metals Park OH, 1988) pp. 351–88.

  21. W. M. STEEN, “Laser Material Processing” (Springer-Verlag, London, 1991) pp. 108–44.

    Book  Google Scholar 

  22. G. J. DAVIES, “Solidification and Casting” (Applied Science, London, 1973) pp. 55–67.

    Google Scholar 

  23. W. S. MILLER and J. WHITE, in “Superplasticity in Aerospace” (TMS, Warrendale, PA, 1988) pp. 211–28.

    Google Scholar 

  24. D. H. SHIN, Y. H. SHIN, Y. W. CHANG and S. C. MAENG, Scripta Metall. Mater. 26 (1992) 117.

    Article  CAS  Google Scholar 

  25. J. PILLING and N. RIDLEY, “Superplasticity in Crystalline Solids” (The Institute of Metals, London 1989) p. 20.

    Google Scholar 

  26. M. C. PANDEY, J. WADSWORTH and A. K. MUKHERJEE, J. Mater. Sci. 23 (1988) 3509.

    Article  CAS  Google Scholar 

  27. A. J. SHAKESHEFF, D. S. MCDARMAID and P. J. GREGSON, Mater. Sci Technol. 7 (1991) 276.

    Article  CAS  Google Scholar 

  28. S. C. FLOOD and J. D. HUNT, in “Metals Handbook”, 9th Edn, Vol. 15 (ASM International, Metals Park OH, 1988) pp. 130–5.

    Google Scholar 

  29. M. C. FLEMINGS, “Solidification Processing” (McGraw-Hill, New York, 1974) p. 150.

    Google Scholar 

  30. N. SONTI and M. F. AMATEAU, Numer. Heat Transf. A 16 (1989), 351.

    Article  Google Scholar 

  31. R. D. DOHERTY, Mater. Sci. Eng. 65 (1984), 181.

    Article  CAS  Google Scholar 

  32. D. H. KIM, B. CANTOR and H. I. LEE, J. Mater. Sci. 23 (1988) 1695.

    Article  CAS  Google Scholar 

  33. J. H. DEVLETIAN and W. E. WOOD, Weld. Res. Council Bull. 290 (1983) 1.

    Google Scholar 

  34. D. E. J. TALBOT, “Solidification Processing 1987”, edited by J. BEECH and H. JONES (Inst. of Metals, London, 1988) pp. 29–32.

    Google Scholar 

  35. Y. ARATA, in “Proceedings of International Conference on Laser Advanced Materials Processing” (LAMP '87), Osaka, 1987, pp. 3–12.

  36. H. TONG AND W. H. GIEDT, Weld. J. 49 (1970) 259-S.

  37. D. A. SCHAUER and W. H. GIEDT, ibid. 57 (1978) 189-S.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitaker, I.R., McCartney, D.G., Calder, N. et al. Microstructural characterization of CO2 laser welds in the Al-Li based alloy 8090. JOURNAL OF MATERIALS SCIENCE 28, 5469–5478 (1993). https://doi.org/10.1007/BF00367817

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367817

Keywords

Navigation