Skip to main content

The engulfment of foreign particles by a freezing interface

Abstract

The interactions of second-phase particles, liquid droplets or gas bubbles with a solidification front form the basis of various materials synthesis and purification processes and the design of microstructures in cast metal-matrix composites, as well as frost heaving and biological cell interactions. The physical mechanisms of this interaction phenomenon are based upon surface thermodynamic factors, solidification parameters, and fluid dynamic effects such as fluid drag and buoyancy. An overview is presented of the role of various factors which determine the nature as well as the kinetics of foreign particle-solidification front interactions, and the current status and limitations of the various theoretical models of the phenomenon.

This is a preview of subscription content, access via your institution.

Abbreviations

V :

Critical velocity for particle engulfment

L :

Latent heat of fusion

a 0 :

Atomic radius

Ω:

Atomic volume

D 1 :

Diffusion coefficient in the liquid

T :

Temperature

R :

Particle radius

ΔS :

Entropy of fusion

ρs :

Density of the solid

ρ1 :

Density of the liquid

ρp :

Density of the particle

k :

Boltzmann's constant

Δv :

Difference in the specific volumes of solid and liquid

G :

Temperature gradient

h 0 :

Critical gap thickness

R b :

Radius of surface bump on particle

σsl :

Surface energy of solid-liquid interface

σpl :

Surface energy of particle-liquid interface

σsp :

Surface energy of solid-particle interface

μ:

Viscosity of the melt

g :

Acceleration due to gravity

Δρ:

Density difference between particle and liquid

A :

Hamaker constant

B :

A/6π

K p :

Thermal conductivity of the particle

K l :

Thermal conductivity of the liquid

C :

Bulk concentration of the liquid

m l :

Slope of liquidus line

K c :

Partition coefficient

C p :

Specific heat of the particle

C 1 :

Specific heat of the liquid

References

  1. N. L. FRIER, Y. SHIOHARA and K. C. RUSSELL, in Proceedings of MRS International Meeting on Advanced Materials, Vol. 4 (MRS, 1989) p. 47.

  2. D. J. LLOYD, Compos. Sci. Tech. 35 (1989) 159.

    CAS  Article  Google Scholar 

  3. J. W. MCCOY and F. E. WAWNER, in “Cast Reinforced Metal Composites”, edited by S. G. FISHMAN and A. K. DHINGRA (ASM International, Metals Park, OH, 1988) p. 237.

    Google Scholar 

  4. D. M. STEFANESCU, B. K. DHINDAW, A. S. KACAR and A. MOITRA, Metall. Trans. 19A (1988) 2847.

    CAS  Article  Google Scholar 

  5. P. K. ROHATGI, R. ASTHANA and S. DAS, Int. Mater. Rev. 31(3) (1986) 115.

    CAS  Article  Google Scholar 

  6. P. K. ROHATGI, F. M. YARANDI, Y. LIU and R. ASTHANA, Mater. Sci. Eng. A147 (1991) L1.

    CAS  Article  Google Scholar 

  7. M. C. FLEMINGS, Sci. Amer. 231 (1974) 88.

    Article  Google Scholar 

  8. K. H. CHEN and W. R. WILOX, J. Cryst. Growth 40 (1977) 214.

    CAS  Article  Google Scholar 

  9. V. H. S. KUO and W. R. WILCOX, Ind. Eng. Chem. Process Des. Dev. 12 (1973) 376.

    CAS  Article  Google Scholar 

  10. A. E. CORTE, J. Geophys. Res, 67 (1962) 1085.

    Article  Google Scholar 

  11. V. L. BRONSTEIN, Y. A. ITKIN and G. S. ISHKOV, J. Cryst. Growth 52 (1981) 345.

    CAS  Article  Google Scholar 

  12. B. K. DHINDAW, A. MOITRA, D. M. STEFANESCU and P. A. CURRERI, Metall. Trans. 19A (1988) 1899.

    CAS  Article  Google Scholar 

  13. D. M. STEFANESCU, A. MOITRA, A. S. KACAR and B. K. DHINDAW, ibid. 21A (1990) 231.

    CAS  Article  Google Scholar 

  14. J. CISSE and G. F. BOLLING, J. Cryst. Growth 10 (1971) 67.

    CAS  Article  Google Scholar 

  15. S. N. OMENYI and A. W. NEUMANN, J. Appl. Phys. 47 (1976) 3956.

    CAS  Article  Google Scholar 

  16. J. CISSE and G. F. BOLLING, J. Cryst. Growth 11 (1971) 25.

    CAS  Article  Google Scholar 

  17. A. M. ZUBKO, V. G. LOBANOV and V. V. NNIKONOVA, Sov. Phys. Crystallog. 18 (1973) 239.

    Google Scholar 

  18. D. R. UHLMAN, B. CHALMERS and K. A. JACKSON, J. Appl. Phys. 53 (1964) 2986.

    Article  Google Scholar 

  19. A. DERUYTTERE, L. FROYEN and S. DEBONDT, Adv. Space Res. 6(5) (1986) 101.

    CAS  Article  Google Scholar 

  20. B. A. MIKUCHI, S. O. SHOOK, W. E. MERCE II and W. G. GREEN, Light Metal Age (October 1986) 16.

  21. C. E. SCHEVZOV and F. WEINBERG, Metall. Trans. 16B (1985) 367.

    Article  Google Scholar 

  22. P. HOEKSTRA and R. D. MILLER, J. Coll. Inter. Sci. 25 (1967) 166.

    CAS  Article  Google Scholar 

  23. C. KORBER, G. RAU, M. D. COSMAN and E. G. CRAVALHO, J. Cryst. Growth 72 (1985) 649.

    CAS  Article  Google Scholar 

  24. J. A. SEKHAR, R. TRIVEDI and S. H. HAN, in “Solidification of Metal Matrix Composites”, edited by P. K. Rohatgi (TMS, 1990) p. 21.

  25. J. A. SEKHAR and R. TRIVEDI, Mater. Sci. Eng. A147 (1991) 9.

    Article  Google Scholar 

  26. O. P. FEDOROV, J. Cryst. Growth 102 (1990) 857.

    CAS  Article  Google Scholar 

  27. V. YA. KHAIMOV-MAL'KOV, in “Growth of Crystals” (in Russian), Vol. 2 (Izd. Akad. Nauk. SSSR, 1959) p. 5.

  28. S. N. OMENYI, R. P. SMITH and A. W. NEUMANN, J. Coll. Interf. Sci. 75 (1980) 117.

    CAS  Article  Google Scholar 

  29. J. POTSCHKE and V. ROGGE, J. Cryst. Growth 94 (1989) 726.

    Article  Google Scholar 

  30. A. A. CHERNOV and A. M. MELNIKOVA, Sov. Phys. Crystallogr. 10 (1966) 672.

    Google Scholar 

  31. R. R. GILPIN, J. Coll. Interf. Sci. 68 (1979) 235.

    CAS  Article  Google Scholar 

  32. A. A. CHERNOV, D, E. TEMKIN and A. M. MELNIKOVA, Sov. Phys. Crystallogr. 21 (1976) 369.

    Google Scholar 

  33. A. A. CHERNOV and A. M. MELNIKOVA, ibid. 10 (1966) 666.

    Google Scholar 

  34. A. A. CHERNOV, D. E. TEMKIN and A. M. MELNIKOVA, ibid. 22 (1977) 656.

    Google Scholar 

  35. R. SASIKUMAR, T. R. RAMAMOHON and B. C. PAI, Acta Metall. Mater. 37 (1989) 2085.

    Article  Google Scholar 

  36. R. SASIKUMAR and M. KUMAR, ibid. 39 (1991) 2503.

    CAS  Article  Google Scholar 

  37. G. F. BOLLING and J. CISSE, J. Cryst. Growth 10 (1971) 56.

    CAS  Article  Google Scholar 

  38. D. SHANGGUN, S. AHUJA and D. M. STEFANESCU, Metall. Trans. 23A (1992) 669.

    Article  Google Scholar 

  39. M. K. SURAPPA and P. K. ROHATGI, J. Mater. Sci. 16 (1981) 765.

    Google Scholar 

  40. P. F. AUBORG, “Interactions of Second Phase Particles with a Crystal Growing from the Melt”, PhD Thesis, MIT, Cambridge, Mass. (1978).

    Google Scholar 

  41. K. C. RUSSELL, J. A. CORNIE and S. Y. OH, in “Interfaces in Metal Matrix Composites” edited by A. K. Dhingra and S. G. Fishman (TMS/AIME, 1986) p. 61.

  42. A. MORTENSEN and I. JIN, Int. Mater. Rev. 37(3) (1992) 101.

    CAS  Article  Google Scholar 

  43. R. AATHANA and S. N. TEWARI, Process. Adv. Mater. in press.

  44. R. M. PILLIAR and J. NUTTING, Phil. Mag. 16 (1967) 181.

    CAS  Article  Google Scholar 

  45. P. K. ROHATGI, S. RAY, R. ASTHANA and C. S. NARENDRANATH, Mater. Sci. Eng. in press.

  46. P. K. ROHATGI and R. ASTHANA, in “Cast Reinforced Metal Composites”, edited by S. G. Fishman and A. K. Dhingra (ASM International, 1988).

  47. P. K. ROHATGI, R. ASTHANA, R. N. YADAV and S. RAY, Metall. Trans. 21A (1990) 2073.

    CAS  Article  Google Scholar 

  48. B. V. DERYAGIN, E. M. LIFSHITZ and L. A. ABRIKOSOVA, Usp. Fiz. Nauk. 64 (1958) 493.

    CAS  Article  Google Scholar 

  49. M. C. FLEMINGS, “Solidification Processing” (McGraw-Hill, 1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asthana, R., Tewari, S.N. The engulfment of foreign particles by a freezing interface. JOURNAL OF MATERIALS SCIENCE 28, 5414–5425 (1993). https://doi.org/10.1007/BF00367810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00367810

Keywords

  • Physical Mechanism
  • Dynamic Effect
  • Cell Interaction
  • Purification Process
  • Liquid Droplet