Advertisement

Journal of Materials Science

, Volume 28, Issue 20, pp 5414–5425 | Cite as

The engulfment of foreign particles by a freezing interface

  • R. Asthana
  • S. N. Tewari
Review

Abstract

The interactions of second-phase particles, liquid droplets or gas bubbles with a solidification front form the basis of various materials synthesis and purification processes and the design of microstructures in cast metal-matrix composites, as well as frost heaving and biological cell interactions. The physical mechanisms of this interaction phenomenon are based upon surface thermodynamic factors, solidification parameters, and fluid dynamic effects such as fluid drag and buoyancy. An overview is presented of the role of various factors which determine the nature as well as the kinetics of foreign particle-solidification front interactions, and the current status and limitations of the various theoretical models of the phenomenon.

Keywords

Physical Mechanism Dynamic Effect Cell Interaction Purification Process Liquid Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

V

Critical velocity for particle engulfment

L

Latent heat of fusion

a0

Atomic radius

Ω

Atomic volume

D1

Diffusion coefficient in the liquid

T

Temperature

R

Particle radius

ΔS

Entropy of fusion

ρs

Density of the solid

ρ1

Density of the liquid

ρp

Density of the particle

k

Boltzmann's constant

Δv

Difference in the specific volumes of solid and liquid

G

Temperature gradient

h0

Critical gap thickness

Rb

Radius of surface bump on particle

σsl

Surface energy of solid-liquid interface

σpl

Surface energy of particle-liquid interface

σsp

Surface energy of solid-particle interface

μ

Viscosity of the melt

g

Acceleration due to gravity

Δρ

Density difference between particle and liquid

A

Hamaker constant

B

A/6π

Kp

Thermal conductivity of the particle

Kl

Thermal conductivity of the liquid

C

Bulk concentration of the liquid

ml

Slope of liquidus line

Kc

Partition coefficient

Cp

Specific heat of the particle

C1

Specific heat of the liquid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. L. FRIER, Y. SHIOHARA and K. C. RUSSELL, in Proceedings of MRS International Meeting on Advanced Materials, Vol. 4 (MRS, 1989) p. 47.Google Scholar
  2. 2.
    D. J. LLOYD, Compos. Sci. Tech. 35 (1989) 159.Google Scholar
  3. 3.
    J. W. MCCOY and F. E. WAWNER, in “Cast Reinforced Metal Composites”, edited by S. G. FISHMAN and A. K. DHINGRA (ASM International, Metals Park, OH, 1988) p. 237.Google Scholar
  4. 4.
    D. M. STEFANESCU, B. K. DHINDAW, A. S. KACAR and A. MOITRA, Metall. Trans. 19A (1988) 2847.Google Scholar
  5. 5.
    P. K. ROHATGI, R. ASTHANA and S. DAS, Int. Mater. Rev. 31(3) (1986) 115.Google Scholar
  6. 6.
    P. K. ROHATGI, F. M. YARANDI, Y. LIU and R. ASTHANA, Mater. Sci. Eng. A147 (1991) L1.Google Scholar
  7. 7.
    M. C. FLEMINGS, Sci. Amer. 231 (1974) 88.Google Scholar
  8. 8.
    K. H. CHEN and W. R. WILOX, J. Cryst. Growth 40 (1977) 214.Google Scholar
  9. 9.
    V. H. S. KUO and W. R. WILCOX, Ind. Eng. Chem. Process Des. Dev. 12 (1973) 376.Google Scholar
  10. 10.
    A. E. CORTE, J. Geophys. Res, 67 (1962) 1085.Google Scholar
  11. 11.
    V. L. BRONSTEIN, Y. A. ITKIN and G. S. ISHKOV, J. Cryst. Growth 52 (1981) 345.Google Scholar
  12. 12.
    B. K. DHINDAW, A. MOITRA, D. M. STEFANESCU and P. A. CURRERI, Metall. Trans. 19A (1988) 1899.Google Scholar
  13. 13.
    D. M. STEFANESCU, A. MOITRA, A. S. KACAR and B. K. DHINDAW, ibid. 21A (1990) 231.Google Scholar
  14. 14.
    J. CISSE and G. F. BOLLING, J. Cryst. Growth 10 (1971) 67.Google Scholar
  15. 15.
    S. N. OMENYI and A. W. NEUMANN, J. Appl. Phys. 47 (1976) 3956.Google Scholar
  16. 16.
    J. CISSE and G. F. BOLLING, J. Cryst. Growth 11 (1971) 25.Google Scholar
  17. 17.
    A. M. ZUBKO, V. G. LOBANOV and V. V. NNIKONOVA, Sov. Phys. Crystallog. 18 (1973) 239.Google Scholar
  18. 18.
    D. R. UHLMAN, B. CHALMERS and K. A. JACKSON, J. Appl. Phys. 53 (1964) 2986.Google Scholar
  19. 19.
    A. DERUYTTERE, L. FROYEN and S. DEBONDT, Adv. Space Res. 6(5) (1986) 101.Google Scholar
  20. 20.
    B. A. MIKUCHI, S. O. SHOOK, W. E. MERCE II and W. G. GREEN, Light Metal Age (October 1986) 16.Google Scholar
  21. 21.
    C. E. SCHEVZOV and F. WEINBERG, Metall. Trans. 16B (1985) 367.Google Scholar
  22. 22.
    P. HOEKSTRA and R. D. MILLER, J. Coll. Inter. Sci. 25 (1967) 166.Google Scholar
  23. 23.
    C. KORBER, G. RAU, M. D. COSMAN and E. G. CRAVALHO, J. Cryst. Growth 72 (1985) 649.Google Scholar
  24. 24.
    J. A. SEKHAR, R. TRIVEDI and S. H. HAN, in “Solidification of Metal Matrix Composites”, edited by P. K. Rohatgi (TMS, 1990) p. 21.Google Scholar
  25. 25.
    J. A. SEKHAR and R. TRIVEDI, Mater. Sci. Eng. A147 (1991) 9.Google Scholar
  26. 26.
    O. P. FEDOROV, J. Cryst. Growth 102 (1990) 857.Google Scholar
  27. 27.
    V. YA. KHAIMOV-MAL'KOV, in “Growth of Crystals” (in Russian), Vol. 2 (Izd. Akad. Nauk. SSSR, 1959) p. 5.Google Scholar
  28. 28.
    S. N. OMENYI, R. P. SMITH and A. W. NEUMANN, J. Coll. Interf. Sci. 75 (1980) 117.Google Scholar
  29. 29.
    J. POTSCHKE and V. ROGGE, J. Cryst. Growth 94 (1989) 726.Google Scholar
  30. 30.
    A. A. CHERNOV and A. M. MELNIKOVA, Sov. Phys. Crystallogr. 10 (1966) 672.Google Scholar
  31. 31.
    R. R. GILPIN, J. Coll. Interf. Sci. 68 (1979) 235.Google Scholar
  32. 32.
    A. A. CHERNOV, D, E. TEMKIN and A. M. MELNIKOVA, Sov. Phys. Crystallogr. 21 (1976) 369.Google Scholar
  33. 33.
    A. A. CHERNOV and A. M. MELNIKOVA, ibid. 10 (1966) 666.Google Scholar
  34. 34.
    A. A. CHERNOV, D. E. TEMKIN and A. M. MELNIKOVA, ibid. 22 (1977) 656.Google Scholar
  35. 35.
    R. SASIKUMAR, T. R. RAMAMOHON and B. C. PAI, Acta Metall. Mater. 37 (1989) 2085.Google Scholar
  36. 36.
    R. SASIKUMAR and M. KUMAR, ibid. 39 (1991) 2503.Google Scholar
  37. 37.
    G. F. BOLLING and J. CISSE, J. Cryst. Growth 10 (1971) 56.Google Scholar
  38. 38.
    D. SHANGGUN, S. AHUJA and D. M. STEFANESCU, Metall. Trans. 23A (1992) 669.Google Scholar
  39. 39.
    M. K. SURAPPA and P. K. ROHATGI, J. Mater. Sci. 16 (1981) 765.Google Scholar
  40. 40.
    P. F. AUBORG, “Interactions of Second Phase Particles with a Crystal Growing from the Melt”, PhD Thesis, MIT, Cambridge, Mass. (1978).Google Scholar
  41. 41.
    K. C. RUSSELL, J. A. CORNIE and S. Y. OH, in “Interfaces in Metal Matrix Composites” edited by A. K. Dhingra and S. G. Fishman (TMS/AIME, 1986) p. 61.Google Scholar
  42. 42.
    A. MORTENSEN and I. JIN, Int. Mater. Rev. 37(3) (1992) 101.Google Scholar
  43. 43.
    R. AATHANA and S. N. TEWARI, Process. Adv. Mater. in press.Google Scholar
  44. 44.
    R. M. PILLIAR and J. NUTTING, Phil. Mag. 16 (1967) 181.Google Scholar
  45. 45.
    P. K. ROHATGI, S. RAY, R. ASTHANA and C. S. NARENDRANATH, Mater. Sci. Eng. in press.Google Scholar
  46. 46.
    P. K. ROHATGI and R. ASTHANA, in “Cast Reinforced Metal Composites”, edited by S. G. Fishman and A. K. Dhingra (ASM International, 1988).Google Scholar
  47. 47.
    P. K. ROHATGI, R. ASTHANA, R. N. YADAV and S. RAY, Metall. Trans. 21A (1990) 2073.Google Scholar
  48. 48.
    B. V. DERYAGIN, E. M. LIFSHITZ and L. A. ABRIKOSOVA, Usp. Fiz. Nauk. 64 (1958) 493.Google Scholar
  49. 49.
    M. C. FLEMINGS, “Solidification Processing” (McGraw-Hill, 1974).Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • R. Asthana
    • 1
  • S. N. Tewari
    • 1
  1. 1.Chemical Engineering DepartmentCleveland State UniversityClevelandUSA

Personalised recommendations