Skip to main content

Arithmetic and geometry: Some remarks on the concept of complementarity


This paper explores the classical idea of complementarity in mathematics concerning the relationship of intuition and axiomatic proof. Section I illustrates the basic concepts of the paper, while Section II presents opposing accounts of intuitionist and axiomatic approaches to mathematics. Section III analyzes one of Einstein's lecture on the topic and Section IV examines an application of the issues in mathematics and science education. Section V discusses the idea of complementarity by examining one of Zeno's paradoxes. This is followed by presenting a few more programmatic suggestions and a brief summary.

This is a preview of subscription content, access via your institution.


  • Bernays, P.: 1985, ‘On Platonism in Mathematics’, in P. Benacerraf and H. Putnam (eds.), Philosophy of Mathematics, 2nd ed. Cambridge U.P., pp. 258–271.

  • Beth, E. and Piaget, J.: 1966, Mathematic. Epistemology and Psychology, Dordrecht, The Netherlands.

  • Blauberg, I.V. et al.: 1977, Systems Theory, Moscow.

  • Bohr, N.: 1964, Atomphysik und menschliche Erkenntnis I and II. Vieweg, Braunschweig.

    Google Scholar 

  • Boyer, C.B.: 1956, History of Analytic Geometry, New York.

  • Boutroux, P.: 1920, L'Ideal Scientifique des Mathematiciens, Paris.

  • Cassirer, E.: 1953, Substance and Function; Einstein's Theory of Relativity (both books bound as one), Dover Publ., New York.

    Google Scholar 

  • Einstein, A.: 1953, ‘Geometry and Experience’, in H. Feigl and M. Brodbeck (eds.), Readings in the Philosophy of Science, New York, pp. 189–195.

  • Goodman, N.D.: 1983, ‘Reflections on Bishop's Philosophy of Mathematics’, Math. Intelligencer 5, 61–68.

    Google Scholar 

  • Grabiner, J.: 1981, The Origins of Cauchy's Rigorous Calculus, Cambridge, U.S.A.

    Google Scholar 

  • Grassmann, H.: 1861, Lehrbuch der Arithmetik für höhere Lehranstalten, Berlin.

  • Grassmann, R.: 1872, Die Formenlehre oder Mathematik, Stettin (Reprint Hildesheim 1966).

  • Grassmann, H.: Gesammelte Mathematische und Physikalische Werke, in F. Engel (ed.), Vol. I.1. Leipzig 1894 (this contains the “Ausdehnungslehre” of 1844 as well as Geometrische Analyse geknüpft an die von Leibniz erfundene geometrische Charakteristik of 1847); Vol. I.2, Leipzig, 1896, Die Ausdehnungslehre von 1862.

  • Grattan-Guinness, I.: 1970, The Development of the Foundations of Mathematical Analysis from Euler to Riemann, Cambridge, U.S.A.

  • Helmholtz, H.: 1971, ‘Zählen und Messen erkenntnistheoretisch betrachtet’, in ders. Philosophische Vorträge und Aufsätze, Akademieverlag Berlin.

  • Hiele van, P.: 1970, ‘Piagets Beitrag zu unserer Einsicht in die kindliche Zahlbegriffsbildung’, Rechenunterricht und Zahlbegriff, Westermann, Braunschweig.

    Google Scholar 

  • Hölder, O.: 1891, ‘Rezension von R. Grassmann’ Die Zahlenlehre oder Arithmetik' Stettin, Göttingische gelehrte Anzeigen, 1892, Nr. 15, 585–595.

  • Hölder, O.: 1900, Anschauung und Denken in der Geometrie, Akademische Antrittsvorlesung, Juli 1899, Leipzig (Reprint Darmstadt 1968).

  • Hölder, O.: 1914, Die Arithmetik in strenger Begründung, Leipzig 1914 (2. Aufl. Berlin 1929).

  • Hölder, O.: 1924, Die mathematische Methode, Berlin.

  • Kant, I.L.: 1956, Werke I–XII, W. Weischedel (ed.), Suhrkamp, Frankfurt a.M.

    Google Scholar 

  • Krohn, W. and P. Weingart: 1987, ‘Nuclear Power as a Social Experiment — European Political “Fall Out” from the Chernobyl Meltdown’, Science, Technology, Human Values 12, 52–58.

    Google Scholar 

  • Kuyk, W.: 1977, Complementarity in Mathematics, Dordrecht.

  • Malcev, A.J.: 1974, Algorithmen und rekursive Funktionen, Vieweg, Braunschweig.

    Google Scholar 

  • Mehlberg, J.J.: 1962, ‘A Classification of Mathematics Concepts’, Synthese 14, 78–86.

    Google Scholar 

  • Menger, K.: 1979, Selected Papers in Logic and Foundations, Didactics, Economics. D. Reidel, Dordrecht.

    Google Scholar 

  • Otte, M. (ed.): 1974, Mathematiker über die Mathematik, Heidelberg.

  • Otte, M.: 1984, ‘Komplementarität’, Dialektik 8, 60–75.

    Google Scholar 

  • Otte, M.: 1984, ‘Ways of Knowing and Modes of Presentation’, CIEAEM 34. Rencontre. Orleans, 41–69.

  • Peano, G.: 1889, Arithmetices principia, Turin. (P. writes in his preface to this book that he has used H. Grassmann's ‘Lehrbuch der Arithmetik’ for his proofs.)

  • Peano, G.: 1891, Die Grundzüge des geometrischen Calcüls (trans. A. Schepp) Leipzig.

  • Peirce, Ch.S.: 1965, Collected Papers, 6 vols., Cambridge, Mass.

  • Piaget, J.: 1947, Psychologie der Intelligenz, Zürich.

  • Piaget, J.: 1966, Abriß der genetischen Epistemologie, Freiburg.

  • Piaget, J.: 1974, ‘Lebendige Entwicklung’, Zeitschrift für Pädagogik 1.

  • Poincaré, H.: 1903, Science and Hypothesis, Paris.

  • Quine, W.O.: 1963, ‘Two Dogmas of Empiricism’, in From a Logical Viewpoint, Harper & Row, New York.

    Google Scholar 

  • Salmon, W.C. (ed.): 1970, Zeno's Paradoxes, Indianapolis.

  • Schröder, E.: 1873, Lehrbuch der Arithmetik und Algebra, Leipzig.

  • Stolz, O.: 1885, Vorlesungen über allgemeine Arithmetik, Leipzig.

  • Turing, A.: 1950, ‘Computing Machinery and Intelligence’, MIND LIX, 433–460.

    Google Scholar 

  • Wang, H.: 1970, ‘The Axiomatization of Arithmetic’, ders. Logic, Computers and Sets, New York. (Originally published Journal of Symb. Log. 22(1957), 145–157.)

  • Wertheimer, M.: 1945, Productive Thinking, New York.

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Otte, M. Arithmetic and geometry: Some remarks on the concept of complementarity. Stud Philos Educ 10, 37–62 (1990).

Download citation

  • Issue Date:

  • DOI:

Key Words

  • complementarity
  • intuitionism
  • axiomatic proof