Skip to main content
Log in

Biochemical characterization of lipopolysaccharides extracted from a hydrophobic strain of Pasteurella multocida

  • Bacteriology
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Lipopolysaccharides were extracted from freeze-dried cells of Pasteurella multocida strain P-1581 (serotype 8) by the phenol-chloroform-petroleum ether method and biochemically analysed using standard procedures. The primary neutral sugars were glucose, galactose and heptose. No deoxy sugars were detected. Amino sugars included galactosamine, glucosamine and glucosamine-6-phosphate. 3-Deoxy-d-manno-2-octulosonic acid was present at a relatively low concentration. The analyses included identification and quantification of phosphate and alanine. The primary fatty acids and their approximate relative ratios were 3-hydroxytetradecanoate and tetradecanoate 2:1. Tetradecanoic acid was bound almost exclusively by ester linkages. 3-Hydroxytetradecanoic acid was bound primarily by amide linkages, although significant numbers of ester-bound residues were noted. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses indicated that the lipopolysaccharides were of low molecular weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

KDO:

3-deoxy-d-manno-2-octulosonic acid

LPS:

lipopolysaccharide(s)

SDS-PAGE:

sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  • Bhat, R., Marx, A., Galanos, C. and Conrad, R.S., 1990. Structural studies of lipid A from Pseudomonas aeruginosa PAO1: occurrence of 4-amino-4-deoxyarabinose. Journal of Bacteriology, 172, 6631–6636.

    Google Scholar 

  • Carter, G.R., 1984. Genus I. Pasteurella. In: N.R. Krieg and J.G. Holt (ed.), Bergey's Manual of Systematic Bacteriology, vol. 1, (Williams and Wilkins, Baltimore), 552–558

    Google Scholar 

  • Conrad, R.S. and Galanos, C., 1989. Fatty acid alterations and polymyxin B binding by lipopolysaccharides from Pseudomonas aeruginosa adapted to polymyxin B resistance. Antimicrobial Agents and Chemotherapy, 33, 1724–1728

    Google Scholar 

  • Darnell, K.R., Hart, M.E. and Champlin, F.R., 1987. Variability of cell surface hydrophobicity among Pasteurella multocida somatic serotype and Actinobacillus lignieresii strains. Journal of Clinical Microbiology, 25, 67–71.

    Google Scholar 

  • Erler, W., Feist, H., Flossmann, K.-D. and Jacob, B., 1977. Charakterisieurung der Lipopolysaccharide einiger Pasteurella-multocida-Stämme. Archiv für Experimentelle Veterinaermedizin, 31, 139–144.

    Google Scholar 

  • Fuller, C.A., Brignac, P.J. and Champlin, F.R., 1993. Phospholipid fatty acid ester composition of Pasteurella multocida and Actinobacillus lignieresii. Current Microbiology, 27, 237–240

    Google Scholar 

  • Galanos, C., Lüderitz, O. and Westphal, O., 1969. A new method for the extraction of R-lipopolysaccharides. European Journal of Biochemistry, 9, 245–249

    Google Scholar 

  • Hart, M.E. and Champlin, F.R., 1988. Susceptibility to hydrophobic molecules and phospholipid composition in Pasteurella multocida and Actinobacillus lignieresii. Antimicrobial Agents and Chemotherapy, 32, 1354–1359

    Google Scholar 

  • Kabir, S. and Ali, S., 1983. Characterization of surface properties of Vibrio cholerae. Infection and Immunity, 39, 1048–1058

    Google Scholar 

  • Karkhanis, Y.D., Zeltner, J.Y., Jackson, J.J. and Carlo, D.J., 1978. A new, improved microassay to determine 2-keto-3-deoxy-octonate in lipopolysaccharide of gram-negative bacteria. Analytical Biochemistry, 85, 559–601.

    Google Scholar 

  • Kickhöfen, B. and Warth, R., 1968. Ein trannkammer für die Hochspannungselektrophorese nach dem Michl'schen Prinzip. Journal of Chromatography, 33, 558–560

    Google Scholar 

  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London), 227, 680–685

    Google Scholar 

  • Lowry, R.R. and Tinsley, I.J., 1974. A simple, sensitive method for lipid phosphorus. Lipids, 9, 491–492

    Google Scholar 

  • Lugtenberg, B., van Boxtel, R. and de Jong, M., 1984. Atrophic rhinitis in swine: correlation of Pasteurella multocida pathogenicity with membrane protein and lipopolysaccharide patterns. Infection and Immunity, 46, 48–54

    Google Scholar 

  • Lysko, P.G. and Morse, S.A., 1981. Neisseria gonorrhoeae cell envelope: permeability to hydrophobic molecules. Journal of Bacteriology, 145, 946–952

    Google Scholar 

  • Manning, P.J., 1982. Serology of Pasteurella multocida in laboratory rabbits: a review. Laboratory Animal Science, 32, 666–671

    Google Scholar 

  • Manning, P.J., 1984. Naturally occurring pasteurellosis in laboratory rabbits: chemical and serological studies of whole cells and lipopolysaccharides of Pasteurella multocida. Infection and Immunity, 44, 502–507

    Google Scholar 

  • Manning, P.J., Naasz, M.A., DeLong, D. and Leary, S.L., 1986. Pasteurellosis in laboratory rabbits: characterization of lipopolysaccharides of Pasteurella multocida by polyacrylamide gel electrophoresis, immunoblot techniques, and enzyme-linked immunosorbent assay. Infection and Immunity, 53, 460–463

    Google Scholar 

  • Miller, R.D., 1983. Legionella pneumophila cell envelope: permeability to hydrophobic molecules. Current Microbiology, 9, 349–354

    Google Scholar 

  • Nikaido, H., 1976. Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochimica et Biophysica Acta, 433, 118–132

    Google Scholar 

  • Rietschel, E.T., Sidorczyk, Z., Zähringer, U., Wollenweber, H.W. and Lüderitz, O., 1983. Analysis of the primary structure of lipid A. In: L. Anderson and F. Unger (eds), Bacterial Lipopolysaccharides—Structure, Synthesis, Biological Activities. (ACS Symposium Series vol. 231. American Chemical Society, Washington DC), 195–218

    Google Scholar 

  • Rimler, R.B., 1990. Comparison of Pasteurella multocida lipopolysaccharides by sodium dodecylsulfate polyacrylamide gel electrophoresis to determine relationship between group B and E hemorrhagic septicemia strains and serologically related group A strains. Journal of Clinical Microbiology, 28, 654–659

    Google Scholar 

  • Rimler, R.B. and Rhoades, K.R., 1989. Pasteurella multocida. In: C. Adlam and J.M. Rutter (eds), Pasteurella and Pasteurellosis, (Academic Press, New York), 37–73

    Google Scholar 

  • Rimler, R.B., Rebers, P.A. and Phillips, M., 1984. Lipopolysaccharides of the Heddleston serotypes of Pasteurella multocida. American Journal of Veterinary Research, 45, 759–763

    Google Scholar 

  • Roantree, R.J., Kuo, T.-T. and MacPhee, D.G., 1977. The effect of defined lipopolysaccharide core defects upon antibiotic resistances of Salmonella typhimurium. Journal of General Microbiology, 103, 223–234

    Google Scholar 

  • Rosenberg, M., Gutnick, D. and Rosenberg, E., 1980. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters, 9, 29–33

    Google Scholar 

  • Rosenberg, M., Rottem, S. and Rosenberg, E., 1982. Cell surface hydrophobicity of smooth and rough Proteus mirabilis strains as determined by adherence to hydrocarbons. FEMS Microbiology Letters, 13, 167–169

    Google Scholar 

  • Sawardeker, J.S., Stoneker, J.H. and Jeanes, A., 1965. Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Analytical Chemistry, 12, 1602–1604

    Google Scholar 

  • Strittmatter, W., Weckesser, J., Salimath, P.V. and Galanos, C., 1983. Nontoxic lipopolysaccharides from Rhodopseudomonas sphaeroides ATCC 17023. Journal of Bacteriology, 155, 153–158

    Google Scholar 

  • Takada, H. and Kotani, S., 1992. Structure-function relationship of lipid A. In: D.C. Morrison and J.L. Ryan (eds.), Bacterial Endotoxic Lipopolysaccarides, vol. 1, Molecular Biochemistry and Cellular Biology, (CRC Press, Boca Raton, FL), 107–134

    Google Scholar 

  • Thies, K.L. and Champlin, F.R., 1989. Compositional factors influencing cell surface hydrophobicity of Pasteurella multocida variants. Current Microbiology, 18, 385–390

    Google Scholar 

  • Tsai, C.M. and Frasch, C.E., 1982. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry, 119, 115–119

    Google Scholar 

  • Williams, P., Lambert, P.A., Haigh, C.G. and Brown, M.R.W., 1986. The influence of the O and K antigens of Klebsiella aerogenes on surface hydrophobicity and susceptibility to phagocytosis and antimicrobial agents. Journal of Medical Microbiology, 21, 125–132

    Google Scholar 

  • Wollenweber, H.W., Broady, K., Lüderitz, O. and Rietschel, E.T., 1982. The chemical structure of lipid A: demonstration of amide-linked 3-acyloxyacyl residues in Salmonella minnesota lipopolysaccharide. European Journal of Biochemistry, 124, 191–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, R.S., Galanos, C. & Champlin, F.R. Biochemical characterization of lipopolysaccharides extracted from a hydrophobic strain of Pasteurella multocida . Veterinary Research Communications 20, 195–204 (1996). https://doi.org/10.1007/BF00366917

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366917

Keywords

Navigation