Skip to main content
Log in

Modeling spurt and stress oscillations in flows of molten polymers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The paper presents an approach for modeling polymer flows with non-slip, slip and changing non-slip — slip boundary conditions at the wall. The model consists of a viscoelastic constitutive equation for polymer flows in the bulk, prediction of the transition from non-slip to sliding boundary conditions, a wall slip model, and a model for the compressibility effects in capillary polymer flows. The bulk viscoelastic constitutive equation contains a hardening parameter which is solely determined by the polymer molecular characteristics. It delimits the conditions for the onset of solid, rubber-like behavior. The non-monotone wall slip model introduced for polymer melts, modifies a slip model derived from a simple stochastic model of interface molecular dynamics for cross-linked elastomers. The predictions for the onset of spurt, as well as the numerical simulations of hysteresis, spurt, and stress oscillations are demonstrated. They are also compared with available data for a high molecular weight, narrow distributed polyisoprene. By using this model beyond the critical conditions, many of the qualitative features of the spurt and oscillations observed in capillary and Couette flows of molten polymers, are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\mathop {\underline{\underline c} }\limits^\triangledown\) :

upper convected derivative of elastic strain tensor \(\underline{\underline c}\)

f, fm, fmin :

dimensionless (sliding) shear friction characteristics, and its maximum and minimum

G:

Hookean elastic modulus

Gp :

plateau modulus

G′, G″:

storage and loss moduli

I1, I2 :

first and second invariant of strain tensor \(\underline{\underline c}\)

I1, I0 :

capillary and barrel lengths

M:

non-dimensional mass flow rate

MC :

critical molecular weight

M*, Me :

molecular weights of a statistical segment, and of polymer chain between entanglements

Mn, MW :

number average and weight average molecular weights

m, k :

two fitting parameters of slip model

ν s , ν os :

nominal and characteristic sliding velocities

u :

non-dimensional sliding velocity

u sc :

initial (infinitesimal) slip velocity

u 1 :

upper limit of u on the lower branch

u 2 :

lower limit of u on the upper branch

u max :

value of u corresponding to fmin

u min :

value of u corresponding to fmax

U:

piston speed

Q:

nominal volumetric flow rate

q:

non-dimensional volumetric flow rate

R, Ro :

capillary and barrel radii

M:

non-dimensional mass flow rate

References

  • Adewale KEP (1996) Modeling of melt flow instabilities of high molecular weight polymers with narrow molecular weight distributions. PhD Dissertation, The University of Akron

  • Adewale KEP, Leonov AI (1993) On modeling spurt flow of polymers. J Non-Newt Fl Mech 49:133–138

    Google Scholar 

  • Bagley EB (1961) The separation of elastic and viscous effect in polymer flow. Trans Soc Rheol 5:355–368

    Google Scholar 

  • Bagley EB, Birks AM (1960) Flow of polyethylene into a capillary. J Appl Phys 31:556–561

    Google Scholar 

  • Bagley EB, Cabot IM, West DC (1958) Discontinuity in flow curve of polyethylene. J Appl Phys 29:109–110

    Google Scholar 

  • Bagley EB, Schreiber HP (1961) Effect of die entry geometry on polymer melt fracture and extrudate distortion. Trans Soc Rheol 5:341–353

    Google Scholar 

  • Bagley EB, Storey SH, West DC (1963) Post extrusion swelling of polyethylene. J Appl Polym Sci 7:1661–1672

    Google Scholar 

  • Bialas GA, White JL (1969) Extrusion of polymer melts and melt flow instabilities. I Experimental study of capillary flow and extrudate distortion. II Site of initiation and mechanisms of melt flow instability. Rubber Chem Technol 42:675–681;682–690

    Google Scholar 

  • Blyler LL, Hart AC (1970) Capillary flow instability of ethylene polymer melts. Polym Eng Sci 10:93–203

    Google Scholar 

  • Borisenkova EK, Dreval VE, Vinogradov GV, Kurbanaliev MK, Moiseyev VV, Shalganova VG (1982) Transition of polymers from the fluid to the forced high-elastic and leathery states at temperature. Polymer 23:91–99

    Google Scholar 

  • Boudreaux E (Jr), Cuculo JA (1977-78) Polymer flow instability: A review and analysis. J Macro Sci C16(1):39–77

    Google Scholar 

  • Brandrup J, Immergut EH (1989) Polymer Handbook. John Wiley, p V/8

  • Brochard F, de Gennes PG (1992) Shear dependent slippage at a polymer/solid interface. Langmuir 8:3033–3037

    Google Scholar 

  • Brydson JA (1970) Elastic effects in polymer melt flow. In: Flow properties of polymer melts. Chap. 5, pp 79–103. Van Nostrand Reinhold Co, New York

    Google Scholar 

  • Chemyak YUB, Leonov AI (1986) On the theory of the adhesive friction of elastomers. Wear 108:105–138

    Google Scholar 

  • Clegg PL (1957) The flow of molten polymer and their effect on fabrication. Brit Plast 30:535–537

    Google Scholar 

  • de Gennes PG (1979) Ecoulements viscometriques de polymeres enchevetres. CR Acad Sci Paris Ser B 288:219–220

    Google Scholar 

  • Denn MM (1990) Issues in viscoelastic fluid mechanics. Annual Rev Fluid Mech 22:13–34

    Google Scholar 

  • Dennison MT (1967) Flow instability in polymer melts: a review. Plastics Polymers 35:803–808

    Google Scholar 

  • El Kissi N, Leger L, Piau JM, Mezghani A (1994) Effect of surface properties on polymer melt slip and extrusion defects. J Non-Newt Fl Mech 52:249–261

    Google Scholar 

  • El Kissi N, Piau JM (1989) Ecoulement de fluides polymeres enchevetres dans un capillaire modelisation due glissement macroscopique a la paroi. CF Acad Sci Paris Ser II, 309:7–9

    Google Scholar 

  • El Kissi N, Piau JM (1990a) Flow of entangled polydimethylsiloxanes through capillary dies: characterization and modelisation of wall slip phenomena. In: Oliver DR (ed) Third European Rheology Conference. Elsevier Applied Science, London, pp 144–146

    Google Scholar 

  • El Kissi N, Piau JM (1990b) The different capillary flow regimes of entangled polydimethylsiloxane polymers: maroscopic slip at the wall, hysteresis and cork flow. J Non-Newt Fl Mech 37:55–94

    Google Scholar 

  • El Kissi N, Piau JM (1990c) Slip phenomenoa in stress controlled and in flow controlled extrusion. Influence of fluid compressibility. Proc Sixth Ann Mtg PPS, Nice, France

  • El Kissi N, Piau JM (1994) Adherence of LLDPE on the wall for flow regimes with sharkskin. J Rheol 38(5):1447–1463

    Google Scholar 

  • Fields RT. Wolf CFG (1961) Fabrication of thermoplastic slip resin. USP 2991508 July 11

  • Flory P (1969) Statistical mechanics of chain molecules. Interscience Publ. NY

    Google Scholar 

  • Georgiou GC, Crochet MJ (194a) Compressible viscous flow in slits with slip at the wall. J Rheol 38:639–654

  • Georgiou GC, Crochet MJ (1994b) Timedependent compressible extrudate-swell problem with slip at the wall. J Rheol 38:1745–1755

    Google Scholar 

  • Han CD (1976) Rheology in polymer processing. Acad Press, New York

    Google Scholar 

  • Han CD, Lamonte RR (1971) A study of polymer melt flow instabilities in extrusion. Polym Eng Sci 11(5):385–394

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991a) Wall slip of molten high density polyethylene. I Sliding plate rheometer studies. J Rheol 35(4):497–523

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991b) The effect of interface conditions on wall slip and melt fracture of high density polyethylene. Proc 49th Techn Conf SPE (ANTEC) Montreal 2311–1314 (May)

  • Hatzikiriakos SG, Dealy JM (1992) Wall slip of molten high density polyethylene. II Capillary rheometer studies. J Rheol 36:703–741

    Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1994) Start-up pressure transients in a capillary rheometer. Polym Eng Sci 493–499

  • Kalika DS, Denn MM (1987) Wall slip and extrudate distortion in linear low-density polyethylene. J Rheol 31(8):815–834

    Google Scholar 

  • Karakin AV, Leonov AI (1968) On self-oscillations in capillary polymer flow. Priklad Mekh Tekhnn Fiz No 3:110–114

    Google Scholar 

  • Kolkka RW, Ierley GR (1989) Phase space analysis of the spurt phenomenon for the Giesekus viscoelastic fluid model. J Non-Newt FI Mech 33:305–323

    Google Scholar 

  • Kolkka RW, Malkus DS, Hansen MG, Ierley GR, Worthing RA (1988) Spurt phenomena of the Johnson- Segalman fluid and related models. J Non-Newt FI Mech 29:303–325

    Google Scholar 

  • Kurtz SJ (1984) In: Mena B, Garcia-Rejon A, Rangel-Nafaile C (eds) Advances in Rheology (Proc IX Int Congress Rheology) Vol 3. Univ National Autonoma Mexico, Mexico City, pp 399–407

    Google Scholar 

  • Kurtz SJ (1994) Visualization of exit fracture in the sharkskin process. Program and Abstracts of Polymer Process Soc, 10th Ann Meet Akron, Ohio 8–9

  • Lau HC, Schowalter WR (1986) A model of adhesive failure of viscoelastic fluid during flow. J Rheol 30:193–206

    Google Scholar 

  • Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworth, Boston

    Google Scholar 

  • Larson RG (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    Google Scholar 

  • Leonov AI (1976) Nonequilibrium thermodynamics and theology of viscoelastic polymer media. Rheol Acta 15:85–98

    Google Scholar 

  • Leonov AI (1987) On a class of constitutive equations for viscoelastic liquids. J NonNewt Fl Mech 25:1–59

    Google Scholar 

  • Leonov AI (1990) On the dependence of friction force on sliding velocity in the theory of adhesive friction of elastomers. Wear 141:137–145

    Google Scholar 

  • Leonov AI (1992) Analysis of simple constitutive equations for viscoelastic liquids. J Non-Newt Fl Mech 42:323–349

    Google Scholar 

  • Leonov AI, Lipkina EKh, Paskhin ED, Prokunin AN (1976) Theoretical and experimental investigations of shearing in elastic polymer liquids. Rheol Acta 15:411–426

    Google Scholar 

  • Leonov AI, Prokunin AN (1980) An improved version of a nonlinear theory of elasto-viscous polymer media. Rheol Acta 19:393–403

    Google Scholar 

  • Leonov AI, Prokunin AN (1983) On nonlinear effects in polymeric liquids unde extension. Rheol Acta 22:137–150

    Google Scholar 

  • Leonov AI, Srinivasan A (1991) On modeling of fluidity loss phenomena in Couette and Poiseuille flows of elastic liquids. Rheol Acta 30:14–22

    Google Scholar 

  • Leonov AI, Srinivasan A (1993) Self-oscillations of an elastic plate sliding over a smooth surface. Int J Engng Sci 31(3):453–473

    Google Scholar 

  • Leonov AI, Prokunin AN (1994) Nonlinear viscoelastic effects in flows of polymer melts and concentrated polymer solutions. Chapman & Hall, NY

    Google Scholar 

  • Lim FJ, Schowalter WK (1989) Wall slip of narrow molecular weight distribution polybutadienes. J Rheol 33:1359–1382

    Google Scholar 

  • Lupton JM (1964) Flow of polymer melts. Chem Eng Progr Sympo Ser 60:17–29

    Google Scholar 

  • Lupton JM, Regester RW (1965) Melt flow of polyethylene at high rates. Polym Eng Sci 5:235–245

    Google Scholar 

  • Lyngaee-Jorgensen J, Marcher B (1985) Spurt fracture in capillary flow. Chem Eng Commun 32:117–151

    Google Scholar 

  • Malkin AY, Leonov AI (1970) Unstable flow of polymers. In: Adv in Pomyer Rheology. Moscow, Khimiya, pp 98–118

    Google Scholar 

  • Malkus SD, Nobel JA, Plohr BJ (1990) Dynamics of shear flow of a non-Newtonian fluid. J Compt Phys 87:464–487

    Google Scholar 

  • Migler KB, Hervet H, Leger L (1993) Slip transition of a polymer melt under shear stress. Phys Rev Lett 70(3):287–290

    Google Scholar 

  • Molenaar J, Koopmans RJ (1994) Modeling polymer melt-flow instabilities. J Rheol 38(1):99–109

    Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Google Scholar 

  • Mooney M (1958) The theology of raw elastomers. In: Eirich FR (ed) Rheology: Theory and Applications Academic Press, New York pp 181–233

    Google Scholar 

  • Myerholtz RW (1967) Oscillating flow behavior of high-density polyethylene melts. J Appl Polym Sci 11:687–698

    Google Scholar 

  • Paskhin ED (1978) Motion of polymer liquids under unstable conditions and in channel terminals. Rheol Acta 17:663–675

    Google Scholar 

  • Pearson JRA (1966) Mechanical principles of polymer melt processing. Pergamon Press, Oxford, p 58

    Google Scholar 

  • Pearson JRA (1994) Flow curves with a maximum. J Rheol 38(2):309–331

    Google Scholar 

  • Pearson JRA, Petrie CJS (1968) On the melt flow instability of extruded polymers. In: Wetton RE, Whorlow RW (eds) Polymer systems deformation and flow. Macmillan, London, England, pp 163–187

    Google Scholar 

  • Petrie CJS, Denn MM (1976) Instabilities in polymer processing. AIChE J 22:209–236

    Google Scholar 

  • Piau JM, El Kissi N (1992) The influence of interface and volume properties of polymer melts on their die flow stability. Proc Xith Int Congr on Rheology, Brussels, Belgium. In: Moldenaers P, Keunings R (eds) Theoretical and Applied Rheology. Elsevier, Science Publishers, pp 70–74

  • Piau JM, El Kissi N (1994) Measurement and modeling of friction in polymer melts during macroscopic slip at the wall. J Non-Newt Fl Mech 54:121–142

    Google Scholar 

  • Piau JM, El Kissi N, Tremblay B (1988) Low Reynolds number flow visualization of linear and branched silicones upstream of orifice dies. J Non-Newt Fl Mech 30:197–232

    Google Scholar 

  • Piau JM, El Kissi N, Tremblay B (1990) Influence of upstream instabilities and wall slip on melt fracture and sharkskin phenomena during silicones extrusion through orifice dies. J Non-Newt Fl Mech 34:145–180

    Google Scholar 

  • Piau JM, El Kissi N, Toussaint F, Mezghani A (1995) Distortions of polymer melt extrudates and their elimination using slippery surfaces. Rheol Acta 34:40–57

    Google Scholar 

  • Ramamurthy AV (1986a) Wall slip in viscous fluids and influence of materials of construction. J Rheol 30:337–357

    Google Scholar 

  • Ramamurthy AV (1986b) LLDPE theology and blown film fabrication. Adv in Polym Technol 6(4):489–499

    Google Scholar 

  • Simhambhatla M, Leonov AI (1995) On the theological modeling of viscoelastic polymer liquids with stable constitutive equations. Rheol Acta 34:259–273

    Google Scholar 

  • Tordella JP (1956) Fracture in the extrusion of amorphous polymer through capillaries. J Appl Phys 27:454–458

    Google Scholar 

  • Tordella JP (1957) Capillary flow of molten polyethylene — a photographic study of melt fracture. Trans Soc Rheol 1:203–212

    Google Scholar 

  • Tordella JP (1958) An instability in the flow of molten polymers. Rheol Acta 1:216–221

    Google Scholar 

  • Tordella JP (1963a) Unstable flow of molten polymers: a second site of melt fracture. J Appl Polym Sci 7:215–229

    Google Scholar 

  • Tordella JP (1963b) An unusual mechanism of extrusion of polytetrafluoroethylene at high temperature and pressure. Trans Soc Rheol 7:231–239

    Google Scholar 

  • Tordella JP (1967) US Patent 2791806

  • Tordella JP (1969) Unstable flow of molten polymers. In: Eirich FR (ed) Rheology Vol V. Academic Press, New York, pp 57–92

    Google Scholar 

  • Tremblay B (1991) Sharkskin defects of polymer melts: the role of cohesion and adhesion. J Rheol 35(6):985–998

    Google Scholar 

  • Uhland E (1979) The anomalous flow behavior of HDPE. Rheol Acta 18:1–24

    Google Scholar 

  • Van Krevelen DW (1990) Properties of polymers, correlations with chemical structure. Elsevier, NY

    Google Scholar 

  • Vinogradov GV (1971) Flow and rubber elasticity of polymeric sytems. Pure and Appl Chem 26:423–449

    Google Scholar 

  • Vinogradov GV (1974) Fundamental problems concerning the interrelation of the structue of polymers and their theological properties in the fluid state. Pure and Appl Chem 39:115–149

    Google Scholar 

  • Vinogradov GV (1975a) Critical regimes of deformation of liquid polymeric systems. Rheol Acta 12:273–323

    Google Scholar 

  • Vinogradov GV (1975b) Viscoelasticity of polymeric systems in fluid and rubbery states in uniaxial extension and shear. Pure and Appl Chem 42:527–549

    Google Scholar 

  • Vinogradov GV (1975c) Viscoelastic and fracture phenomenon in uniaxial extension of high-molecular linear polymers. Rheol Acta 14:942–954

    Google Scholar 

  • Vinogradov GV (1977) Ultimate regimes of deformation of linear flexible chain fluid polymers. Polymer 18:1275–1285

    Google Scholar 

  • Vinogradov GV (1981) Limiting regimes of deformation of polymers. Polym Eng Sci 21:339–351

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Leonov AI (1963) Conditions of unstable flow of viscoelastic polymer systems. Kolloid Z 191:25–30

    Google Scholar 

  • Vinogradov GV, Makin VN (1965) An experimental study of elastic turbulence. Koll Z 201:93–98

    Google Scholar 

  • Vinogradov GV, Ivanova LI (1968) Wall slippage and elastic turbulence of polymers in the rubbery state. Rheol Acta 7:243–254

    Google Scholar 

  • Vinogradov GV, Friedman ML, Yarlykov NV, Malkin AYa (1970) Unsteady flow of polymer melts: polypropylene. Rheol Acta 9:323–329

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Yanovski YG, Yarlykov NV, Berezhnaya GV (1972a) Viscoelastic properties and flow of narrow polybutadienes and polyisoprenes. J Polym Sci A2:1061–1084

    Google Scholar 

  • Vinogradov GV, Insarova NI, Boiko BB, Borisenkova EK (1972a) Critical regimes of shear in linear polymers. Polym Eng Sci 12:323–334

    Google Scholar 

  • Vinogradov GV, Malkin AYa, Blinova NK, Sergeyenkov SI, Zabugina MP, Titkova LV, Yanovsky YuG, Shalganova VG (1973) Peculiarities of flow and viscoelastic properties of solutions of polymers with a narrow molecular weight distribution. Europ Polymer 19:1231–1249

    Google Scholar 

  • Vinogradov GV, Isayev AI, Katsyutsevich EV (1978) Critical regimes of oscillatory deformation of polymeric systems above glass transition and melting temperatures. J Appl Polym Sci 22:727–749

    Google Scholar 

  • Vinogradov GV, Yanovsky YuG, Titkova LV, Barancheyeva VV, Sergeyenkov I, Borisenkova EK (1980) Viscoelastic properties of linear polymers in the fluid state and their transition to the high-elastic state. Polym Eng Sci 20(17):1138–1146

    Google Scholar 

  • Vinogradov GV, Protasov VP, Dreval VE (1984) The theological behavior of flexible-chain polymers in the region of high shear rates and stresses, the critical process of spurting, and supercritical conditions of their movement at T<Tg. Rheol Acta 23:46–61

    Google Scholar 

  • Wang S-Q, Drda PA, Inn Y-W (1996a) Exploring molecular origins of sharkskin, partial slip, and slope change in flow curves of linear low density polyethylene. J Rheol 40(5):875–898

    Google Scholar 

  • Wang S-Q, Drda PA (1996b) Global and local stick-slip transitions are origins of spurt flow instability and sharkskin in capillary extrusion of polyethylene. In: AitKadi A, Dealy JM, James DF, Williams MC (eds) Proc XII Int Congr on Rheology. August 18–23, 1996, Quebec City (Canada), pp 109–110

  • White JL (1973) Critique of flow pattern in polymer fluids at the entrance of a die and instabilities leading to extrudate distortion. Appl Polym Symp 20:155–174

    Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Decker, New York

    Google Scholar 

  • Yamane H, White JL (1987) A comparative study of flow instabilities in extrusion, melt spinning, and tubular blown film extrusion of theologically characterized high density, low density and linear low density polyethylene melts. Nihon Reoloji Gakkaishi (Journal of the Society of Rheology, Japan) 15:131–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adewale, K.P., Leonov, A.I. Modeling spurt and stress oscillations in flows of molten polymers. Rheola Acta 36, 110–127 (1997). https://doi.org/10.1007/BF00366817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366817

Key words

Navigation