Skip to main content
Log in

Brownian dynamics simulation of rodlike polymers under shear flow

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The highly nonlinear behaviors of rodlike polymers in nematic phase under shear flow are studied with Brownian dynamics simulation. The LebwohlLasher nematogen model is taken as the prototype of the simulation and the mean-field approximation is avoided. By considering the nearest-neighbor intermolecular interaction, the spatial orientational correlation is introduced and therefore the spatial inhomogeneity such as the multiple-domain effect can automatically be incorporated. The transient order parameters, birefringence axes, shear stresses and first normal stress differences are calculated. The important finding of this work is that the director wagging and damped oscillation share the same molecular origin as director tumbling. The only difference is that the system is split into micro-domains which tumble with different phase angles in the wagging and damped oscillation regimes. The tumbling of the director of the whole system is suppressed due to the spatial inhomogeneity of director fields and then the damped oscillation of macroscopic stresses becomes predominant. The negative first normal stress difference exists at moderate shear rates, where both elasticity and viscosity play important role. Our simulation results including some dimensionless scaling parameters find good agreement with experimental observations in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek SG, Magda JJ, Cemantwala S (1993) Normal stress differences in liquid crystalline hydroxypropylcellulose solutions. J Rheol 37(5):935–945

    Google Scholar 

  • Bedford SE, Windle AH (1993) Modelling of microstructure in mesophases. Liq Cryst 15(1):31–63

    Google Scholar 

  • Berry GC (1988) Rheological properties of nematic solutions of rodlike polymers. Mol Cryst Liq Cryst 165:333 - 360

    Google Scholar 

  • Berry GC, Srinvasarao M (1991) Rheology of nematic solutions of rodlike chains: comparison of theory and experiment. J Stat Phys 62:1041–1059

    Google Scholar 

  • Bitsanis I, Davis HT, Tirrel M (1988) Brownian dynamics of nondilute solutions of rodlike polymers. I. Low concentrations. Macromolecules 21:2834–2835

    Google Scholar 

  • Brochard F (1979) Viscosity of dilute polymer solutions in nematic liquids. J Polym Sci, Polym Phys Ed 17:1367–1374

    Google Scholar 

  • Burghardt WR, Fuller G (1990) Transient shear flow of nematic liquid crystals: manifestations of director tumbling. J Rheol 34(6):959 - 992

    Google Scholar 

  • Burghardt WR, Fuller G (1991) Role of director tumbling in the rheology of polymer liquid crystal solutions. Macromolecules 24:2546–2555

    Google Scholar 

  • Chen Y, Li Y, Zhang H, Yang Y (to be published) Theory of inhomogeneous polymers lattice model for the interface between flexible polymer and small molecular liquid crystal. Mol Cryst Liq Cryst

  • Chiccoli C, Pasini P, Zannoni C (1988) A Monte Carlo investigation of the planar Lebwohl-Lasher lattice model. Physica 148A:298–311

    Google Scholar 

  • Chow AW, Hamlin RD, Ylitalo CM (1992) Transient shear response and flow-induced microstructure of isotropic and nematic rigid-rod. Macromolecules 25:7135 - 7144

    Google Scholar 

  • Cocchini F, Aratari C, Marrucci G (1990) Tumbling of rodlike polymers in the liquid-crystalline phase under shear flow. Macromolecules 23:4446 - 4451

    Google Scholar 

  • Cocchini F, Nobile MR, Acierno D (1991) Transient steady rheological behavior of the thermotropic liquid crystal copolymer 73/27 HBA/HNA. J Rheol 35(6):1171–1189

    Google Scholar 

  • Derfel G (1989) Analysis of shear flow alignment of nematic liquid crystals at low shear stress based on catastrophe theory. Liq Cryst 6(6):709 - 716

    Google Scholar 

  • Doi M (1981) Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J Polym Sci, Polym Phys Ed 19:229 - 243

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford, pp 289 - 345

    Google Scholar 

  • Doi M, Harden JL, Ohta T (1993) Anomalous rheological behavior of ordered phases of block copolymers. 2. Macromolecules 26:4935 - 4944

    Google Scholar 

  • Edwards BJ, Beris AN, Grmela M (1990) Generalized constitutive equation for polymeric liquid crystals. Part 1. Model formulation using the Hamiltonian (Poisson Bracket) formulation. J Non-Newt Fluid Mech 35:51–72

    Google Scholar 

  • Farhoudi Y, Rey AD (1993 a) Shear flows of nematic polymers. I. Orienting modes, bifurcations, and the steady state rheological predictions. J Rheol 37(2):289–314

    Google Scholar 

  • Farhoudi Y, Rey AD (1993 b) Shear flows of nematic polymers. II. Stationary regimes and start-up dynamics. J Non-Newt Fluid Mech 49:175–204

    Google Scholar 

  • Gleeson JT, Larson RG, Mead DW, Kiss G, Cladis PE (1992) Image analysis of shear-induced textures in liquidcrystalline polymers. Liq Cryst 11(3):341–364

    Google Scholar 

  • Grabowski DA, Schmidt C (1994) Simultaneous measurement of shear viscosity and director orientation of a sidechain liquid-crystalline polymer by rheo-NMR. Macromolecules 27:2632 - 2634

    Google Scholar 

  • Grizzuti N, Cavella S, Cicarelli P (1990) Transient and steady-state rheology of a liquid crystalline hydroxypropylcellulose solution. J Rheol 34(8):1293–1310

    Google Scholar 

  • Grizzuti N, Guido S, Nastri V, Marrucci G (1991) Velocity profiles in rectangular channel flow of liquid crystalline polymer solutions. Rheol Acta 30:71–76

    Google Scholar 

  • Gu DF, Jamieson AM, Wang SQ (1993) Rheological characterization of director tumbling induced in a flow-aligning nematic solvent by dissolution of a side-chain liquidcrystal polymer. J Rheol 37(6):985–1001

    Google Scholar 

  • Gu DF, Jamieson AM (1994) Rheological characterization of director dynamics in a nematic monodomain containing mesogenic polymers of differing architectures. Macromolecules 27(2):337 - 347

    Google Scholar 

  • Guskey SM, Winter HH (1991) Transient shear flow behavior of a thermotropic liquid crystalline polymer in the nematic state. J Rheol 35(6):1191–1207

    Google Scholar 

  • Holz A, Ochiai M, Yamazaki Y (1994) Stability analysis of polymeric liquid crystal in shearing flow and texture formation. In: Liquid crystalline polymers (Ed. Carfagna C), Pergamon, Oxford, pp 95–125

    Google Scholar 

  • Hongladarom K, Burghardt WR (1993) Molecular alignment of polymer liquid crystals in shear flows. 2. Transient flow behavior in poly(benzyl glutamate) solutions. Macromolecules 26:785–794

    Google Scholar 

  • Kiss G, Porter RS (1978) Rheology of concentrated solutions of poly(y-benzyl-glutamate). J Polym Sci, Polym Symp 65:193 - 211

    Google Scholar 

  • Kiss G, Porter RS (1980) Rheology of concentrated solutions of helical polypeptides. J Polym Sci, Polym Phys Ed 18:361–388

    Google Scholar 

  • Larson RG (1990) Arrested tumbling in shearing flow of liquid crystal polymers. Macromolecules 23:3983–3992

    Google Scholar 

  • Larson RG, Doi M (1991) Mesoscopic domain theory for textured liquid crystalline polymers. J Rheol 35(4): 539–563

    Google Scholar 

  • Larson RG, Mead DW (1989) Linear viscoelasticity of nematic liquid crystalline polymers. J Rheol 33(2): 185–206

    Google Scholar 

  • Larson RG, Ottinger HC (1991) Effect of molecular elasticity on out-of-plane orientations in shear flows of liquidcrystalline polymers. Macromolecules 24:6270 - 6282

    Google Scholar 

  • Lebwohl PA, Lasher G (1972) Nematic-liquid-crystal order — a Monte Carlo calculation. Phys Rev A 6(1):426–429

    Google Scholar 

  • Lu J, Yu T, Yang Y (1993) Molecular field theory and Monte Carlo simulation of phase transition in surfacealigned nematic film. Sci in Chn A36(5):624–631

    Google Scholar 

  • Magda JJ, Back SG, DeVries KL, Larson RG (1991a) Unusual pressure profiles and fluctuations during shear flows of liquid crystalline polymers. Polymer 32(10): 1794–1797

    Google Scholar 

  • Magda JJ, Back SG, DeVries KL, Larson RG (1991 b) Shear flows of liquid crystalline polymers: measurements of the second normal stress difference and the Doi molecular theory. Macromolecules 24:4460–4468

    Google Scholar 

  • Marrucci G (1985) Rheology of liquid crystalline polymers. Pure Appl Chem 57(1):1545–1552

    Google Scholar 

  • Marrucci G (1990) Rheology of rodlike polymers in the nematic phase with tumbling or shear orientation. Rheol Acta 29:523 - 528

    Google Scholar 

  • Marrucci G (1991) Tumbling regime of liquid crystalline polymers. Macromolecules 24:4176 - 4182

    Google Scholar 

  • Marrucci G, Greco F (1993) Flow behavior of liquid crystalline polymers. Adv in Chem Phys LXXXVI:331–405

    Google Scholar 

  • Marrucci G, Maffettone PL (1989) Description of the liquid-crystalline phase of rodlike polymers at high shear rates. Macromolecules 22:4076 - 4082

    Google Scholar 

  • Marrucci G, Maffettone PL (1990a) Nematic phase of rodlike polymers. I. Prediction of transient behavior at high shear rates. J Rheol 34(8):1217 -1230

    Google Scholar 

  • Marrucci G, Maffettone PL (1990b) Nematic phase of rodlike polymers. II. Polydomain predictions in the tumbling regimes. J Rheol 34(8):1231–1244

    Google Scholar 

  • Marrucci G, Maffettone PL (1994) LCP defect dynamics in shear flows. In: Liquid crystalline polymers (Ed. Carfagna C), Pergamon, Oxford, pp 126–131

    Google Scholar 

  • Mewis J, Moldenaers P (1987) Transient rheological behavior of a lyotropic polymeric liquid crystal. Mol Cryst Liq Cryst 153:291–300

    Google Scholar 

  • Moldenaers P, Mewis J (1986) Transient behavior of liquid crystalline solutions of poly(benzyl-glutamate). J Rheol 30(3):567 - 584

    Google Scholar 

  • Moldenaers P, Mewis J (1993) On the nature of viscoelasticity in polymeric liquid crystals. J Rheol 37(2):367–380

    Google Scholar 

  • Moldenaers P, Fuller G, Mewis J (1989) Mechanical and optical rheometry of polymer liquid-crystal domain structure. Macromolecules 22:960 - 965

    Google Scholar 

  • Moldenaers P, Yanase H, Mewis J (1991) Flow-induced anisotropy and its decay in polymeric liquid crystals. J Rheol 35:1681–1699

    Google Scholar 

  • Narvard P (1986) Formation of band textures in hydroxypropylcellulose liquid crystals. J Polym Sci, Polym Phys Ed 24:435–460

    Google Scholar 

  • Ohta T, Enomoto Y, Harden JL, Doi M (1993) Anomalous rheological behavior of ordered phases of block copolymers. I. Macromolecules 26:4928 - 4934

    Google Scholar 

  • Ottinger HC (1989) Computer simulation of reptation theories. I. Doi-Edwards and Curtiss-Bird models. J Chem Phys 91(10):6455–6462

    Google Scholar 

  • Pearson D, Herbolizheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci, Polym Phys Ed 29:1589–1597

    Google Scholar 

  • Rey AD, Denn MM (1989) Converging flow of tumbling nematic liquid crystals. Liq Cryst 4(3):253 - 272

    Google Scholar 

  • Viola GG, Baird DG (1986) Studies on the transient shear flow behavior of liquid crystalline polymers. J Rheol 30(3):601–628

    Google Scholar 

  • Wedgewood LE (1993) Internal viscosity in polymer kinetic theory: shear flows. Rheol Acta 32:405 - 417

    Google Scholar 

  • Winter HH, Wedler W (1993) Note: about measuring the first normal stress difference in shear flow of a thermotropic copolyester. J Rheol 37(2):409–412

    Google Scholar 

  • Yang IK, Shine AD (1992) Electrorheology of a nematic poly(n-hexyl isocyanate) solution. J Rheol 36(6):1079–1104

    Google Scholar 

  • Yang IK, Shine AD (1993) Transient shear flow of a unidomain liquid crystal polymer. Macromolecules 26: 1529–1536

    Google Scholar 

  • Yang Y, Lu J, Zhang H, Yu T (1994) Phase equilibria in mixtures of thermotropic small molecular liquid crystals and flexible polymers. Polym J 26(8):880–894

    Google Scholar 

  • Yang Y, Lu J, Zhang H, Yu T (to be published) Molecular field theory of the Frederiks transition and its Monte Carlo conformation. Mol Cryst Liq Cryst

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Yang, Y. Brownian dynamics simulation of rodlike polymers under shear flow. Rheol Acta 33, 405–418 (1994). https://doi.org/10.1007/BF00366583

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366583

Key words

Navigation