Skip to main content
Log in

The second normal stress difference for pure and highly filled viscoelastic fluids

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In the present work the measurement and description of the second normal stress difference in pure viscoelastic fluids and in suspensions of these fluids is discussed. The various measurement methods implemented to date are described briefly. Following this, the cone-and-plate distance method, which was introduced by Jackson and Kaye, is discussed. The analysis method of this experimentally relative simply implemented technique is modified. This is done by assuming that the ratio ψ* of the second normal stress difference to the first is independent of shear rate. This permits the precalculation of the measured function with ψ* as a curve parameter. The best possible fit of the measurement leads to the determination of ψ*. This method is used to measure the normal stress ratio of pure polyisobutene and of a 34.5% suspension of the same fluid. The result for the pure fluid matches literature values; ψ* of the suspension was found to have negative sign, as for the pure fluid, but to be of much greater magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Baird DG (1975) A possible method for determining normal stress differences from hole pressure error data. Trans Soc Rheol 19:307–335

    Google Scholar 

  • Bird RB, Armstrog RC, Hassager O (1987) Dymamics of polymeric liquids. Vol 1, J. Wiley & Sons, New York

    Google Scholar 

  • Böhme G (1974) Eine Theorie für sekundäre Strömungserscheinungen in nichtnewtonischen Fluiden. DLR FB 74–24

  • Broadbent JM, Kaye A, Lodge AS, Vale DG (1968) Possible systematic error in the measurement of normal stress differences in polymer solutions in steady shear flow. Nature 217:55–56

    Google Scholar 

  • Carreau PJ (1968) PhD Thesis; University of Wisconsin, Madison

    Google Scholar 

  • Christiansen EB, Leppard WR (1974) Steady-state and oscillatory flow properties of polymer solutions. Trans Soc Rheol 18:65–86

    Google Scholar 

  • Demarmels A, Meissner J (1986) Multiaxial elongations of polyisobutylene and the predictions of several network theories. Colloid Polym Sci 264:829

    Google Scholar 

  • Ehrmann G (1976) Bestimmung der zweiten Normalspannungsdifferenz von Polymerschmelzen. Rheol Acta 15:8–14

    Google Scholar 

  • Eitelberg G (1983) Weissenberg effect and its dependence upon the experimental geometry. Rheol Acta 22:131–136

    Google Scholar 

  • Es HE van (1974) A new method for determining the second normal stress difference in viscoelastic fluids. Rheol Acta 13:905–909

    Google Scholar 

  • Gao HW, Ramachandran S, Christiansen EB (1981) Dependency of the steady-state and transient viscosity and first and second normal stress difference functions on molecular weight for linear mono polydisperse polystyrene solutions. J Rheol 25:213–235

    Google Scholar 

  • Ginn RF, Metzner AB (1963) Normal stress in polymeric solutions. Proc 4. Congr Rheol, Ed EH Lee Interscience Publishers pt 2; 533–600

  • Ginn RF, Metzner AB (1969) Measurement of stresses developed in steady laminar shearing flows of viscoelastic media. Trans Soc Rheol 13:429–453

    Google Scholar 

  • Gleißle W (1978 a) Ein Kegel-Platte-Rheometer für sehr zähe viscoelastische Flüssigkeiten bei hohen Schergeschwindigkeiten, Untersuchung des Fließverhaltens von hochmolekularem Siliconöl und Polyisobutylen. Dissertation Universität Karlsruhe (TH)

  • Gleißle W (1978b) Interner Bericht; Institut für mechanische Verfahrenstechnik; Universität Karlsruhe (TH)

  • Harris J (1968) Measurement of normal stress differences in solutions of macromolecules. Nature 217:1248–1249

    Google Scholar 

  • Higashitani K, Iwamoto K (1976) Estimation of second normal stress difference by falling film method. In: Klason C, Kubat J (eds) Proc 7 Int Congr Rheol, Gothenburg, pp 222–223

  • Higashitani K, Pritchard WG (1972) A kinematic calculation of intrinsic errors in pressure measurements made with holes. Trans Soc Rheol 16:687–696

    Google Scholar 

  • Higashitani KO, Lodge AS (1975) Trans Soc Rheol 19:307–335

    Google Scholar 

  • Jackson R, Kaye A (1966) The measurement of the normal stress differences in a liquid undergoing simple shear flow using a cone and plate total thrust apparatus only. Brit Appl Phys 17:1355–1360

    Google Scholar 

  • Janeschitz-Kriegel (1983) Polymer melt rheology and flow birefringence. Springer Verlag, Berlin New York

    Google Scholar 

  • Joseph DD, Beavers GS (1977) Rheol Acta 16:167–189

    Google Scholar 

  • Keentok M, Georgescu AG, Sherwood AA, Tanner RI (1980) The measurement of second normal stress difference for some polymer solutions. J Non-Newt Fl Mech 6:303–324

    Google Scholar 

  • Kotaka T, Kurata M, Tamura M (1959) Normal stress effect in polymer solutions. J Appl Phys 30:1750

    Google Scholar 

  • Kuo Y, Tanner RI (1974) On the use of open-channel flows to measure the second normal stress difference. Rheol Acta 13:443–456

    Google Scholar 

  • Lodge AS (1985) Low shear-rate rheometry and pol quality control. Chem Eng Comm 32:1/60

    Google Scholar 

  • Lodge AS, Al-Hadithi TSR, Walters K (1987) Measurement of the first normal-stress difference at high shear rates for a PIB/decalin solution “D2”. Rheol Acta 26:516–521

    Google Scholar 

  • Lodge AS, Ko YS (1989) Slit die viscometry at shear rates up to 5e+06 〈1/s〉: an analytical correction for small viscous heating errors. Rheol Acta 28:464–472

    Google Scholar 

  • Marsh BD, Pearson JRA (1968) The measurement of normal-stress differences using cone-and-plate total thrust apparatus. Rheol Acta 4:326–331

    Google Scholar 

  • Meissner J, Garbella RW, Hostetter J (1989) Measuring normal stress differences in polymer melt shear flow. J Rheol 33:843–864

    Google Scholar 

  • Petersen JF (1974) Zur Bestimmung der Normalspannungsfunktionen von Hochpolymeren mittels der Kegel-Platte-Abstands-Anordnung. Ph D Thesis, Aachen

  • Pipkin AC, Tanner RI (1972) A survey of theory and experiment in viscometric flows of viscoelastic liquids. In: Nemat-Nasser S (ed) Mechanics today. Pergamon Press, Oxford; Vol 1, pp 262–321

    Google Scholar 

  • Pollett WFO (1955) Rheological behavior of continuously sheared polythene. Brit J Appl Phys 6:199–206

    Google Scholar 

  • Pritchard WG (1971) Measurements of the viscometric functions for a fluid in steady shear flow. Phil Trans Roy Soc Lond A 270:507–556

    Google Scholar 

  • Ramachandran S, Gao HW, Christiansen EB (1985) Dependence of viscoelastic flow functions on molecular structure for linear and branched polymers. Macromolecules 18:695–699

    Google Scholar 

  • Sturges LD, Joseph DD (1975) Slow motion and viscometric motion pt. 5: The free surface on a simple fluid flowing down a titled trough. Arch Rational Mech Anal 59:359–387

    Google Scholar 

  • Sturges LD, Joseph DD (1980) A normal stress amplifier for the second normal stress difference. J Non-Newt Fl Mech 6:325–331

    Google Scholar 

  • Tanner RI (1970) Some methods for estimating the normal stress functions in viscometric flows. Trans Soc Rheol 14:483–507

    Google Scholar 

  • Wagner MH, Demarmels A (1990) A constitutive analysis of extensional flows of polyisobutylene. J Rheol 34:943–958

    Google Scholar 

  • Wales JLS (1976) The application of flow birefringence measurements to rheological studies of polymer melts. Delft University Press

  • Wales JLS, Philippoff W (1973) Rheol Acta 12:25

    Google Scholar 

  • Weissenberg K (1947) Cont Theory of Rheol Phen. Nature 159:310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohl, N., Gleissle, W. The second normal stress difference for pure and highly filled viscoelastic fluids. Rheola Acta 31, 294–305 (1992). https://doi.org/10.1007/BF00366508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00366508

Key words

Navigation