Skip to main content
Log in

Both α-tubulin genes are transcriptionally active in Stylonchyia lemnae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Macronuclear DNA of the hypotrichous ciliate Stylonychia lemnae contains two size-classes of molecules coding for α-tubulin. Analysis of their coding regions demonstrates that these two size-classes represent two different functional α-tubulin genes, α1 and α2; a comparison of these regions shows a 97% homology in their nucleotide sequence and 98.5% in their amino acid sequence. S1-mapping experiments indicate that both α1-and α2-tubulin genes are transcribed. The 5′ and 3′ noncoding regions flanking the α1- and α2-tubulin genes differ in both length and nucleotide sequence within one strain. When different strains are compared, however, identical non-coding regions and slightly varying coding regions can be found in DNA molecules containing the α1-tubulin genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammermann D (1965) Arch Protistenk 108:109–152

    Google Scholar 

  • Ammermann D (1971) Chromosoma 33:209–238

    Google Scholar 

  • Ammermann D, Steinbrück G, Berger L v, Hennig W (1974) Chromosoma 45:401–429

    Google Scholar 

  • Baker CC, Herisse J, Coutois G, Galibert E, Ziff E (1979) Cell 18:569–580

    Google Scholar 

  • Birnstiel ML, Busslinger M, Strub K (1985) Cell 41:349–359

    Google Scholar 

  • Bucher P, Trifonov E (1986) Nucleic Acid Res 14:10009–10026

    Google Scholar 

  • Caron F, Meyer E (1985) Nature 314:185–188

    Google Scholar 

  • Cleveland DW, Sullivan KF (1985) Annu Rev Biochem 54:331–365

    Google Scholar 

  • Cowan NJ (1984) In: Maclean N (ed) Oxford surveys on eukaryotic genes, vol 1. Oxford University Press, Oxford London, pp 36–60

    Google Scholar 

  • Elsevier SM, Lipps HJ, Steinbrück G (1978) Chromosoma 69:291–306

    Google Scholar 

  • Ginzburg J, Behar L, Divol D, Littauer UZ (1981) Nucleic Acid Res 9:2691–2697

    Google Scholar 

  • Glisin V, Crkvanjakow R, Byus C (1974) Biochemistry 13:2633–2637

    Google Scholar 

  • Grass DS, Jove R, Manley JL (1987) Nucleic Acid Res 15:4417–4436

    Google Scholar 

  • Grunstein M, Hogness D (1975) Proc Natl Acad Sci USA 72:3961–3965

    Google Scholar 

  • Helftenbein E (1985) Nucleic Acid Res 13:415–433

    Google Scholar 

  • Horowtiz S, Gorovsky MA (1985) Proc Natl Acad Sci USA 82:2452–2455

    Google Scholar 

  • Kaine BP, Spear BB (1982) Nature 295:430–432

    Google Scholar 

  • Klobutcher LA, Swanton MT, Donini P, Prescott DM (1981) Proc Natl Acad Sci USA 78:3015–3019

    Google Scholar 

  • Konkel DA, Tilghman S, Leder P (1978) Cell 15:1125–1132

    Google Scholar 

  • Korn LJ, Brown DD (1978) Cell 15:1145–1156

    Google Scholar 

  • Lawn RM, Herrick G, Heumann J, Prescott DM (1978) Cold Spring Harbor Symp Quant Biol 42:483–492

    Google Scholar 

  • Lemischka I, Sharp PA (1982) Nature 300:330–335

    Google Scholar 

  • Lipps HJ, Steinbrück G (1978) Chromosoma 69:21–26

    Google Scholar 

  • Mandelkow EM, Herrmann K, Rühl U (1985) 185:311–327

  • Maniatis T, Fritsch EF, Sambrock J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Maxam AM, Gilbert W (1977) Proc Natl Acad Sci USA 74:560–564

    Google Scholar 

  • Meyer GF, Lipps HJ (1980) Chromosoma 77:285–297

    Google Scholar 

  • Meyer GF, Lipps HJ (1982) Chromosoma 82:309–314

    Google Scholar 

  • Miller KG, Sollner-Webb B (1981) Cell 27:165–174

    Google Scholar 

  • Miller DL, Krupp JL, Shu HH, Martin NC (1985) Nucleic Acid Res 13:859–872

    Google Scholar 

  • Monteiro MJ, Cox RA (1987) J Mol Biol 193:427–438

    Google Scholar 

  • Nock A (1981) Chromosoma 83:209–220

    Google Scholar 

  • Ponstingl H, Little M, Krauhs E (1984). In: Hearn MTW (ed) Peptide and protein reviews, vol 2. Dekker, New York, pp 1–81

    Google Scholar 

  • Preer JR, Preer LB, Rudman BM, Barnett AJ (1985) Nature 314:188–191

    Google Scholar 

  • Proudfoot NJ, Brownlee GG (1976) Nature (Lond) 263:211–214

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Serrano L, Avila J, Maccioni RB (1984a) Biochemistry 23:4675–4681

    Google Scholar 

  • Serrano L, de la Torre J, Maccioni RB, Availa J (1984b) Proc Natl Acad Sci USA 81:5989–5993

    Google Scholar 

  • Steinbrück G, Haas I, Hellmer KH, Ammermann D (1981) Chromosoma 83:199–208

    Google Scholar 

  • Valenzuela P, Quiroga M, Zaldivar J, Rutter WJ, Kirschner MW, Cleveland DW (1981) Nature 289:650–655

    Google Scholar 

  • Weaver RF, Weissmann C (1979) Nucleic Acid Res 7:1175–1193

    Google Scholar 

  • Wünning IU, Lipps HJ (1983) EMBO J 2:1753–1757

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helftenbein, E., Müller, E. Both α-tubulin genes are transcriptionally active in Stylonchyia lemnae . Curr Genet 13, 425–432 (1988). https://doi.org/10.1007/BF00365664

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365664

Key words

Navigation