Skip to main content
Log in

Analysis of “integrate-to-threshold” neural coding schemes

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Methods of analysis for some deterministic and stochastic variants of the integrate-to-threshold neural coding scheme are presented. Adaptation phenomena are modeled by means of feedforward and feedback adaptive threshold control. Simulations of sinusoidal and step responses reproduce satisfactorily the qualitative characteristics of adaptation as compared with physiological data. It is postulated that such adaptive threshold control may be accomplished by the release, or conformation change, of molecules involved in the control of excitable-channel dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett, M.S.: The spectral analysis of point processes. J. R. Statist. Soc. B. Vol. 25, 264–287 (1963)

    Google Scholar 

  2. Bayly, E.J.: Spectral analysis of pulse frequency modulation in the nervous system. IEEE Trans. Biomed. Eng. BME-15, 257–265 (1968)

    Google Scholar 

  3. Bullock, T.H.: Neuron doctrine and electrophysiology. Science 129, 997–1002 (1959)

    Google Scholar 

  4. Carlson, A.B.: Communication systems. Tokyo: McGraw Hill Kogakusha 1975

    Google Scholar 

  5. Chung, S.-H., Raymond, S.A., Lettvin, J.Y.: Multiple meaning in single visual units. Brain Behav. Evol. 3, 72–101 (1970)

    Google Scholar 

  6. Cole, K.S.: Ions and impulses — A chapter of classical biophysics. Berkeley: U.C. Berkeley Press 1968

    Google Scholar 

  7. Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187, 517–552 (1966)

    Google Scholar 

  8. Fohlmeister, J.F.: A model for phasic and tonic repetitively firing neuronal encoders. Kybernetik 13, 104–112 (1973)

    Google Scholar 

  9. Fohlmeister, J.F., Poppele, R.E., Purple, R.L.: Repetitive firing: Dynamic behavior of sensory neurons reconciled with a quantitative model. J. Neurophysiol. 37, 1213–1227 (1974)

    Google Scholar 

  10. Fohlmeister, J.F., Poppele, R.E., Purple, R.L.: Repetitive firing: A quantitative study of feedback in model encoders. J. Gen. Physiol. 69, 815–848 (1977a)

    Google Scholar 

  11. Fohlmeister, J.F., Poppele, R.E., Purple, R.L.: Repetitive firing: Quantitative analysis of encoder behavior of slowly adapting stretch receptor of crayfish and eccentric cell of limulus. J. Gen. Physiol. 69, 849–877 (1977b)

    Google Scholar 

  12. Friedman, B.: Principles and techniques of applied mathematics. New York: Wiley & Sons 1956

    Google Scholar 

  13. Gerstein, G.L., Perkel, D.H.: Mutual temporal relationships among neuronal spike trains. Biophys. J. 12, 453–473 (1972)

    Google Scholar 

  14. Gestri, G.: Pulse frequency modulation in neural systems. Biophys. J. 11, 98–109 (1971)

    Google Scholar 

  15. Harmon, L.D., Lewis, E.R.: Neural modelling. Physiol. Rev. 46, 513–591 (1966)

    Google Scholar 

  16. Hodgkin, L.: The conduction of nervous impulse. Springfield, Ill.: Thomas 1964

    Google Scholar 

  17. IBM System/360 Continuous System Modelling Program-System Manual

  18. Knox, C.K.: Signal transmission in random spike trains with applications to the statocyst neurons of the lobster. Kybernetik 7, 167–174 (1970)

    Google Scholar 

  19. Lee, H.C.: Integral pulse frequency modulation with technological and biological applications. Ph.D. dissertation, McGill Univ., Montreal, Quebec, 1969

  20. Lee, H.C., Milsum, J.H.: Statistical analysis of multiunit, multipath neural communication. Math. Biosci. 11, 181–202 (1971)

    Google Scholar 

  21. Li, C.C.: Integral pulse frequency modulated control systems. Ph.D. dissertation, Northwestern University, Illinois, 1961

  22. Milgram, P., Inbar, G.F.: Distortion suppression in neuronmuscular information transmission due to interchannel dispersion in muscle spindle firing thresholds. IEEE Trans. Biomed. Eng. BME-23, 1–15 (1976)

    Google Scholar 

  23. Papoulis, A.: Probability, Random variables, and stochastic processes. New York: McGraw Hill 1965

    Google Scholar 

  24. Papoulis, A.: The Fourier integral and its applications. New York: McGraw Hill 1962

    Google Scholar 

  25. Pavlidis, T.: Analysis and synthesis of pulse frequency modulation feedback systems. Ph.D. dissertation, University of California, Berkeley, 1964

  26. Perkel, D.H., Bullock, T.M.: Neural coding. Neurosci. Res. Program Bull. 6, 221–348 (1968)

    Google Scholar 

  27. Perkel, D.H.: Spike trains as carriers of information. In: The neurosciences, second study program. Schmidt, F.O. (ed.), p. 587. New York: Rockefeller Univ. 1970

    Google Scholar 

  28. Poppele, R.E., Chen, W.J.: Repetitive behavior of mammalian muscle spindle. J. Neurophysiol. 35, 357–364 (1972)

    Google Scholar 

  29. Rowe, H.E.: Signals and noise in communication systems. New Jersey: Van Nostrand Comp. 1965

    Google Scholar 

  30. Sanderson, A.C., Calvert, T.W.: Distribution coding in neural interaction models. Internal Report, Carnegie-Mellon University, Pittsburgh, PA, 1973

    Google Scholar 

  31. Segundo, J.P.: Communication and coding by nerve cells. In: The neurosciences, second study program. Schmidt, F.O. (ed.), p. 569. New York: Rockefeller Univ. 1970

    Google Scholar 

  32. Siebert, W.M.: Frequency discrimination in the auditory system: Place of periodicity mechanism? Proc. IEEE 58, 723–730 (1970)

    Google Scholar 

  33. Snyder, D.L.: Random point processes. New York: Wiley & Sons 1975

    Google Scholar 

  34. Stein, R.B.: The role of spike trains in transmitting and distorting sensory signals. In: The neurosciences, second study program. Schmidt, F.O. (ed.), p. 597. New York: Rockefeller Univ. 1970

    Google Scholar 

  35. Stein, R.B., French, A.S., Holden, A.V.: The frequency response, coherence, and information capacity of two neuronal models. Biophys. J. 12, 295–322 (1972)

    Google Scholar 

  36. Stein, R.B., French, A.S.: Models for the transmission of information by nerve cells. In: Proc. Fifth International Meeting of Neurophysiologists, Oslo, 1970

  37. Sugiyama, H., Moore, G.P., Perkel, D.H.: Solutions for a stochastic model of neuronal spike production. Math. Biosci. 8, 323–341 (1970)

    Google Scholar 

  38. Terzuolo, C.A.: Data transmission by spike trains. In: The neurosciences, second study program. Schmidt, F.O. (ed.), p. 661. New York: Rockefeller Univ. 1970

    Google Scholar 

  39. Verveen, A.A., De Felice, L.J.: Membrane noise. Prog. Biophys. Mol. Biol. 28, 189–265 (1974)

    Google Scholar 

  40. Verveen, A.A., Derksen, H.E.: Fluctuation phenomena in nerve membrane. Proc. IEEE 56, 906–915 (1968)

    Google Scholar 

  41. Walløe, L.: Transfer of signals through a second order sensory neuron. Inst. of Physiology, Univ. Oslo, 1968

  42. Wright, M.J., Ikeda, H.: Processing of spatial and temporal information in the visual system. In: The neurosciences, third study program. Schmidt, F.O., Worden, F.G. (eds.). Cambridge, MA: MIT Press 1974

    Google Scholar 

  43. Zeevi, Y.Y., Bruckstein, A.M.: A note on single signed integral pulse frequency modulation. IEEE Trans. Syst. Man Cybern. SMC-7, 875–877 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruckstein, A.M., Zeevi, Y.Y. Analysis of “integrate-to-threshold” neural coding schemes. Biol. Cybernetics 34, 63–79 (1979). https://doi.org/10.1007/BF00365471

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365471

Keywords

Navigation