Skip to main content
Log in

Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014Hz region

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium titanate (MgTiO3) powder was prepared by a chemical route (Pechini method) and different dopants were added to prepare several compositions. These pure and doped compositions were sintered in air and dense ceramics were obtained. The pure MgTiO3 samples were also subjected to different heat treatments during sintering. Complex permittivity spectra of ceramic samples were determined by various techniques in the 109–1014 Hz range. These techniques included infrared spectroscopy in transmission and reflectivity modes and microwave dielectric measurements. Extrapolation to microwave frequencies from infrared data, according to the proportionality ɛ″(v) ∝ v, agrees quite well with the microwave data measured at 8 GHz and it is a useful procedure to estimate intrinsic microwave losses. Fast cooling from high temperatures of MgTiO3 samples increased dielectric loss, probably due to a structural disorder. Dopants have two types of effect depending on whether they form a distinct second phase or a solid solution with MgTiO3. In this last case intrinsic losses are strongly affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wakino, M. Murata and H. Tamura, J. Amer. Ceram. Soc. 69 (1986) 34.

    Article  CAS  Google Scholar 

  2. H. Tamura, D. A. Sagala and K. Wakino, Jpn. J. Appl. Phys. 25 (1986) 787.

    Article  CAS  Google Scholar 

  3. J. Petzelt et al., Ferroelectrics 93 (1989) 77.

    Article  CAS  Google Scholar 

  4. A. S. Barker, Jr and M. Tinkham, Phys. Rev. 125 (1962) 1527.

    Article  CAS  Google Scholar 

  5. W. G. Spitzer, R. C. Miller, D. A. Kleinman and L. E. Howarth, ibid. 126 (1962) 1710.

    Article  CAS  Google Scholar 

  6. C. H. Perry, D. J. Mccarthy and G. O. Rupprecht, Phys. Rev. A 138 (1965) 1537.

    Article  CAS  Google Scholar 

  7. G. O. Rupprecht and R. O. Bell, Phys. Rev. 125 (1962) 1915.

    Article  CAS  Google Scholar 

  8. B. D. Silverman, ibid. 125 (1962) 1921.

    Article  CAS  Google Scholar 

  9. V. L. Gurevich and A. K. Tagantsev, Adv. Phys. 40 (1991) 719.

    Article  CAS  Google Scholar 

  10. J. Petzelt et al. in Proceedings of the 2nd European Conference on Polar Dielectrics, London, April 1992 (to be published in Ferroelectrics).

  11. J. Petzelt et al., Phys. Rev. B 30 (1984) 5172.

    Article  CAS  Google Scholar 

  12. J. K. Plourde and C. L. Ren, IEEE Trans. Microwave Theory Tech. 29 (1981) 754.

    Article  Google Scholar 

  13. B. W. Hakki and P. D. Coleman, IRE Trans. Microwave Theory Tech. 8 (1960) 402.

    Article  Google Scholar 

  14. V. M. Ferreira, F. Azough, J. L. Baptista and R. Freer in Proceedings of the 2nd European Conference on Polar Dielectrics, London, April 1992 (to be published in Ferroelectrics).

  15. H. Tamura and M. Katsube, US Patent 4242213, (1980).

  16. A. M. F. Y. Haider and A. Edgar, J. Phys. C 13 (1980) 6239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, V.M., Baptista, J.L., Kamba, S. et al. Dielectric spectroscopy of MgTiO3-based ceramics in the 109–1014Hz region. JOURNAL OF MATERIAL SCIENCE 28, 5894–5900 (1993). https://doi.org/10.1007/BF00365198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00365198

Keywords

Navigation