Skip to main content
Log in

Phylogenetic relationships among laboratory and wild-origin Mus musculus strains on the basis of genomic DNA RFLPs

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genetic distance measures between the laboratory mouse strains C57BL/6J and RF/J and the wild-origin Mus musculus mouse strains CAST/Ei, MOLF/Ei, POSCH I, and CZECH II were estimated by allelic patterns revealed by RFLP analysis. These results suggest phylogenetic relationships indicating that the mouse strains related to the subspecies M.m. domesticus (RF/J, POSCH I and C57BL/6J) are more closely related to the CAST/Ei strain (derived from M.m. castaneus) than to the strains CZECH II (M.m. musculus) and MOLF/Ei (M.m. molossinus). Furthermore, the hybrid strain C57BL/6J is more closely related to POSCH I (M.m. poschiavinus) than to RF/J as calculated by the method distance measures of Cavalli-Sforza and Edwards (Evolution 21,550, 1967), Nei's minimum (Am. Natural. 106,283, 1972) and unbiased minimum (Genetics 89,583, 1978), Edwards (Biometrics 27,873, 1971; Genetic Distance, p. 41, 1974) and Rogers modified (1986).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, S., Minty, A., Bourlet, Y., Buckinham, M. (1986). Comparison of three actin-coding sequences in the mouse, evolutionary relationships between the actin genes of warm-blooded vertebrates. J. Mol. Evol. 23, 11–22.

    Google Scholar 

  • Atchley, W.R., Fitch, W.M. (1991). Gene trees and the origins of inbred strains of mice. Science 254, 554–558.

    Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1988). Current Protocols in Molecular Biology. (New York: Greene Publishing Associates and Wiley-Interscience).

    Google Scholar 

  • Bargmann, C.I., Hung, M.C., Weinberg, R.A. (1986). Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 45, 649–657.

    Google Scholar 

  • Bishop, C.E., Boursot, P., Baron, B., Bonhomme, F., Hatat, D. (1985). Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315, 70–72.

    Google Scholar 

  • Blank, R.D., Campbell, G.R., D'Eustachio, P. (1986). Possible derivation of the laboratory mouse genome from multiple wild Mus species. Genetics 114, 1257–1269.

    Google Scholar 

  • Bonhomme, F., Guénet, J.-L. (1989). The wild house mouse and its relatives. In Genetic Variants and Strains of the Laboratory Mouse, M.L. Lyon and A.G. Searle, eds. (Oxford: Oxford University Press), pp. 649–662.

    Google Scholar 

  • Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V.M., Moriwaki, K., Nevo, E., Thaler, L. (1984). Biochemical diversity and evolution in the genus Mus. Biochem. Genet. 22, 275–303.

    Google Scholar 

  • Bonhomme, F., Guénet, J.-L., Dod, B., Moriwaki, K., Bulfield, G. (1987). The polyphyletic origin of laboratorty inbred mice and their rate of evolution. Biol. J. Linn. Soc. Lond. 30, 51–58.

    Google Scholar 

  • Bonhomme, F., Miyashita, N., Boursot, P., Catalan, J., Moriwaki, K. (1989). Genetical variation and phylogenetic origin in Japanese Mus musculus. Heredity 63, 289–297.

    Google Scholar 

  • Brunet, J.F., Dosseto, M., Denizot, F., Mattei, M.G., Clark, W.R., Haqqi, T.M., Ferrier, P., Nabholz, M., Schmitt-Verhulst, A.M., Luciani, M.F., Golstein, P. (1986). The inducible cytotoxic T-lymphocyte associated gene transcript CTLA-1 sequence and gene localization to mouse chromosome 14. Nature 322, 268–271.

    Google Scholar 

  • Cavalli-Sforza, L.L., Edwards, A.W.F. (1967). Phylogenetic analysis: models and estimation procedures. Evolution 21, 550–570.

    Google Scholar 

  • Chang, A.C.Y., Nunberg, J.H., Kaufman, R.J., Erlich, H.A., Schimke, R.T., Cohen, S.N. (1978). Phenotypic expression in E. coli of a DNA sequence coding for mouse dihydrofolate reductase gene. Nature 275, 617–624.

    Google Scholar 

  • Cooper, C.S., Park, M., Blair, D.G., Tainsky, M.A., Huebner, K., Croce, C.M., Van De Woude, G.F. (1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature 311, 29–33.

    Google Scholar 

  • Curran, T., Peters, G., Van Beveren, C., Teich, N.H., Verma, I.M. (1982). FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA. J. Virol. 44, 674–682.

    Google Scholar 

  • Dahl, H.H.M., Mercer, J.F.B. (1986). Isolation and sequence of a cDNA clone which contains the complete coding region of the rat phenylalanine hidroxylase. J. Biol. Chem. 261, 4148–4153.

    Google Scholar 

  • DeLorbe, W.J., Luciw, P.A., Goodman, H.M., Varmus, H.E., Bishop, J.M. (1980). Molecular cloning and characterization of avian sarcoma virus circular DNA molecules. J. Virol. 36, 50–56.

    Google Scholar 

  • DePinho, R.A., Legouy, E., Feldman, L.B., Kohl, N.E., Yancapoulus, G.D., Alt, F.W. (1986). Structure and expression of the murine N-myc oncogen. Proc. Natl. Acad. USA 83, 1827–1831.

    Google Scholar 

  • D'Eustachio, P., Owens, G.C., Edelman, G.M., Cunningham, B.A. (1985). Chromosomal location of the gene encoding the neural cell adhesion molecule (N-CAM) in the mouse. Proc. Natl. Acad. Sci. USA 82, 7631–7635.

    Google Scholar 

  • Dickson, C., Smith, R., Brookes, S., Peters, G. (1984). Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell 37, 529–536.

    Google Scholar 

  • Disteche, C.M., Kunkel, L.M., Lojewski, A., Orkin, S.H., Eisenhard, M., Sahar, E., Travis, B., Latt, S.A. (1982). Isolation of mouse X-chromosome specific DNA from an X-enriched lambda phage library derived from flow sorted chromosomes. Cytometry 2, 282–286.

    Google Scholar 

  • Donner, L., Fedele, L.A., Garon, C.F., Anderson, S.J., Sherr, C.J. (1982). McDonough feline sarcoma virus: characterization of the molecularly cloned provirus and its feline oncogene (v-fms). J. Virol. 41, 489–500.

    Google Scholar 

  • Edwards, A.W.F. (1971). Distances between populations on the basis of gene frequencies. Biometrics 27, 873–881.

    Google Scholar 

  • Edwards, A.W.F. (1974). Distance measures for phylogenetic trees. In Genetic Distance, J.F. Crow, ed. (New York: Plenum Press), pp. 41–73.

    Google Scholar 

  • Ellis, R.W., Defeo, D., Maryak, J.M., Young, H.A., Shih, T.Y., Chang, E.H., Lowy, D.R., Scolnick, E.M. (1980). Dual evolutionary origin for the rat genetic sequences of Harvey murine sarcoma virus. J. Virol. 36, 408–420.

    Google Scholar 

  • Ellis, R.W., Defeo, D., Shih, T.Y., Gonda, M.A., Young, H.A., Tsuchida, N., Lowy, D.R., Scolnick, E.M. (1981). The p21src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292, 506–510.

    Google Scholar 

  • Epstein, R., Davisson, M., Lehmann, K., Akeson, E.C., Cohn, M. (1986). Position of Igl-1, md and Bst loci on chromosome 16. Immunogenetics 23, 78–83.

    Google Scholar 

  • Farris, J.S. (1972). Estimating phylogenetic trees from distance matrices. Am. Naturalist 106, 645–668.

    Google Scholar 

  • Farris, J.S. (1981). Distance data in phylogenetic analysis. In Advances in Cladistics: Proceedings of the First Meeting of the Willi-Hennig Society, V.A. Funk, D.R. Brooks, eds. Bronx, N.Y.: New York Botanical Garden, pp. 3–23.

    Google Scholar 

  • Felsenstein, J. (1982). Numerical method for inferring evolutionary trees. Q. Rev. Biol. 57, 379–404.

    Google Scholar 

  • Felsenstein, J. (1984). Distance methods for inferring phylogenies: a justification. Evolution 38, 16–24.

    Google Scholar 

  • Ferris, S.D., Sage, R.D., Wilson, A.C. (1982). Evidence from mt DNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163–165.

    Google Scholar 

  • Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U., Wilson, A.C. (1983a). Mitochondrial DNA evolution in mice. Genetics 105, 681–721.

    Google Scholar 

  • Ferris, S.D., Sage, R.D., Huang, C.M., Nielsen, J.T., Ritte, U., Wilson, A.C. (1983b). Flow of mitochondrial DNA across a species boundary. Proc. Natl. Acad. Sci. USA 80, 2290–2294.

    Google Scholar 

  • Festing, M.F.W., Lovell, D.P. (1981). Domestication and development of the mouse as a laboratory animal. Symp. Zool. Soc. Lond. 47, 43–62.

    Google Scholar 

  • Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapoport, J.M., Albert, D.M., Dryja, T.P. (1986). A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646.

    Google Scholar 

  • Gonzales, F.J., Kasper, C.B. (1981). Cloning of epoxide hydratase complementary DNA. J. Biol. Chem. 256, 4697–4700.

    Google Scholar 

  • Guerrero, I., Villasante, A., Corces, V., Pellicer, A. (1985). Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen. Proc. Natl. Acad. Sci. USA 82, 7810–7814.

    Google Scholar 

  • Heidmann, O., Buonanno, A., Geoffroy, B., Robert, B., Guénet, J.-L., Merlie, J.P., Changeux, J.P. (1986). Chromosomal localization of muscle nicotinic acetylcholine receptor gene in the mouse. Science 234, 866–868.

    Google Scholar 

  • Hunt, C.R., Ro, J.H-S., Dobson, D.E., Min, H.Y., Spiegelman, B.M. (1986). Adipocyte P2 gene: developmental expression and homology of 5-flanking sequences among fat cell-specific genes. Proc. Natl. Acad. Sci. USA 83, 3786.

    Google Scholar 

  • Kidd, K.K., Saramella-Zonda, L. (1971). Phylogenetic analysis: concepts and methods. Am. J. Hum. Genet. 23, 235–252.

    Google Scholar 

  • Kleene, K.C., Distel, R.J., Hecht, N.B. (1985). Nucleotide sequence of a cDNA clone encoding mouse protamine 1. Biochemistry 24, 719–722.

    Google Scholar 

  • Kurihara, Y., Miyashita, N., Moriwaki, K., Petras, M.L., Bonhomme, F., Cho, W.S., Kohno, S.I. (1985). Serological survey of T-lymphocyte differentiation antigens in wild mice. Immunogenetics 22, 211–218.

    Google Scholar 

  • Lamar, E.E., Palmer, E. (1984).Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell 37, 171–177.

    Google Scholar 

  • Legouy, E., DePinho, R., Zimmerman, K., Collum, R., Yancopoulos, G., Mitsock, L., Ronald, K., Alt, F.W. (1989). Structure and expression of the murine L-myc gene. EMBO J. 6, 3359–3366.

    Google Scholar 

  • Levin, M.S., Li, E., Ong, D.E., Gordon, J.I. (1987). Comparison of the tissue-specific expression and developmental regulation of two closely linked rodent genes encoding cytosolic retinol binding proteins. J. Biol. Chem. 262, 7118–7124.

    Google Scholar 

  • Linzer, D.I.H., Mordacq, J.C. (1987). Transcriptional regulation of proliferin gene expression in response to serum in transfected mouse cells. EMBO J. 6, 2281–2288.

    Google Scholar 

  • Mark, G.E., Rapp, U.R. (1984). Primary structure of v-raf: relatedness to the src family of oncogenes. Science 224, 285–289.

    Google Scholar 

  • Marth, J.D., Cooper, J.A., King, C., Ziegler, S.F., Tinker, D.A., Overell, R.W., Krebs, E.G., Perlmutter, R.M. (1988). Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol. Cell. Biol. 8, 540–550.

    Google Scholar 

  • McDonald, J., Beru, N., Goldwasser, E., (1987). Rearrangement and expression of erythropoietin genes in transformed mouse cells. Mol. Cell. Biol. 7, 365–370.

    Google Scholar 

  • Moriwaki, K. (1987). Genetic significance of laboratory mice in biomedical research. Prog. Clin. Biol. Res. 229, 53–72.

    Google Scholar 

  • Morse, H.C., III (1978). Introduction. In Origins of Inbred Strains, H.C. Morse III, ed. (New York: Academic Press), pp. 3–21.

    Google Scholar 

  • Nagamine, C.M., Nishioka, Y., Moriwaki, K., Boursot, P., Bonhomme, F., Lau, Y.F.C. (1992). The musculus-type Y chromosome of the laboratory mouse is of Asian origin. Mammalian Genome 3, 84–91

    Google Scholar 

  • Nei, M. (1972). Genetic distance between populations. Am. Naturalist 106, 283–292.

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.

    Google Scholar 

  • Nishioka, Y. (1987). Y-chromosomal DNA polymorphism in mouse inbred strains. Genet. Res. 50, 69–72.

    Google Scholar 

  • Nishioka, Y., Lamothe, E. (1986). Isolation and characterization of a mouse Y chromosomal repetitive sequence. Genetics 113, 417–432.

    Google Scholar 

  • Nobuhara, H., Kuida, K., Furutani, M., Shiroishi, T., Moriwaki, K., Yanagi, Y., Tada, T. (1989). Polymorphism of T-cell receptor genes among laboratory and wild mice: diverse origins of laboratory mice. Immunogenetics 30, 405–413.

    Google Scholar 

  • Potter, M., (1978). Comments on the relationship of inbred strains to the genus Mus. In Origins of Inbred Mice, H.C. Morse III, ed. (New York: Academic Press), pp. 497–509.

    Google Scholar 

  • Roach, A., Boylan, K., Horvath, S., Prusiner, S.B., Hood, L.E. (1983). Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. Cell 34, 799–806.

    Google Scholar 

  • Robinson, P.J., Steinmetz, M., Moriwaki, K., Lindahl, K.F. (1984). β-2 microglobulin types in mice of wild origin. Immunogenetics 20, 655–665.

    Google Scholar 

  • Rogers, J.S. (1972). Measures of genetic similarity and genetic distance. Stud. Genet. VII, University of Texas Publications 7213, 145–153.

  • Rogers, J.S. (1986). Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. Syst. Zool. 35, 297–310.

    Google Scholar 

  • Rogers, J.S. (1990). Genic evolution, historical biogeography, and systematic relationships among spiny pocket mice (Subfamily Heteromyinae). J. Mammal. 71, 668–684.

    Google Scholar 

  • Shen-Ong, G.L.C., Mushinski, J.F., Lavu, S., Reddy, E.P. (1984). Activation of the c-myb locus by viral insertional mutagenesis in plasmacytoid lymphosarcomas. Science 226, 1077–1080.

    Google Scholar 

  • Sneath, P.H.A., Sokal, R.R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. (San Francisco: Freeman).

    Google Scholar 

  • Suzuki, H., Miyashita, N., Moriwaki, K., Kominami, R., Muramatsu, M., Kanehisa, T., Bonhomme, F., Petras, M.L., Yu, Z.C., Lu, D.Y. (1986). Evolutionary implication of heterogeneity of nontranscribed spacer region of ribosomal DNA repeating units in various subspecies of Mus musculus. Mol. Biol. Evol. 3, 126–137.

    Google Scholar 

  • Swofford, D.L. (1981). On the utility of the distance Wagner procedure. In Advances in Cladistics: Proceedings of the First Meeting of the Willi-Hennig Society, V.A. Funk, D.R. Brooks, eds. (Bronx, N.Y.: New York Botanical Garden), p. 250.

    Google Scholar 

  • Swofford, D.L., Selander, R.K. (1989). Biosys-1, a Computer Program for the Analysis of Allellic Variation in Population Genetics and Biochemical Systematics (Champaign: Illinois Natural History Survey).

    Google Scholar 

  • Tedder, T.F., Klejman, G., Disteche, C.M., Adler, D.A., Schlossman, S.F., Saito, H. (1988). Cloning of a complementary DNA encoding a new mouse B lymphocyte antigen homologous to the human B1 (CD20) antigen and localization of the gene to chromosome 19. J. Immunol. 141, 4388–4394.

    Google Scholar 

  • Thaler, L., Bonhomme, F., Britton-Davidian, J. (1981). Process of speciation and semispeciation in the house mouse. Symp. Zool. Soc. Lond. 47, 27–41.

    Google Scholar 

  • Thompson, E.A. (1973). The method of minimum evolution. Ann. Hum. Genet. 36, 333–340.

    Google Scholar 

  • Torti, S.V., Kwak, E.L., Miller, S.C., Miller, L.L., Ringold, G.M., Myambo, K.B., Young, A.P., Torti, F.M. (1988). The molecular cloning and characterization of murine ferritin heavy chain, a tumor necrosis factor-inducible gene. J. Biol. Chem. 263, 12638–12644.

    Google Scholar 

  • Transy, C., Nash, S.R., David-Watine, B., Cochet, M., Hunt III, S.W., Hood, L.E., Kourilsky, P. (1987). A low polymorphic mouse H2 class I gene from the Tla complex is expressed in a broad variety of cell types. J. Exp. Med. 166, 341–361.

    Google Scholar 

  • Tsichlis, P.N., Strauss, P.G., Kozaz, C.A. (1984). Cellular DNA region involved in induction of thymic lymphomas (Mlvi-2) maps to mouse chromosome 15. Mol. Cell. Biol. 4, 997–1000.

    Google Scholar 

  • Tsichlis, P.N., Strauss, P.G., Lohse, M.A. (1985). Concerted DNA rearrangements in Moloney murine leukemia virus induced thymomas: a potential synergistic relationship in oncogenesis. J. Virol. 56, 258–267.

    Google Scholar 

  • Tucker, P.K., Lee, B.K., Lundrigan, B.L., Eicher, E.M. (1992). Geographic origin of the Y chromosomes in “old” inbred strains of mice. Mammalian Genome 3, 254–261.

    Google Scholar 

  • Watanabe, T., Miyashita, N., Nishimura, M., Saitou, N., Hayashi, Y., Moriwaki, K. (1989). Evolutionary relationships between laboratory mice and subspecies of Mus musculus based on the restriction fragment length variants of the chymotrysin gene at the Prt-2 locus. Biochem. Genet. 27, 119–130.

    Google Scholar 

  • Wiedemann, L.M., Perry, R.P. (1984). Characterization of the expressed gene and several processed pseudogenes for the mouse ribosomal protein L30 gene family. Mol. Cell. Biol. 4, 2418–2528.

    Google Scholar 

  • Wright, S. (1978). Variability Within and Among Natural Populations, Evolution and the Genetics of Populations, 4th ed. (Chicago: University of Chicago Press).

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O., Watanabe, J., Hayashi, J.I., Miyashita, N., Petras, M.L., Tagashira, Y. (1980). Relationship between laboratory mice and the subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochoondrial DNA. Jpn. J. Genet. 55, 289–296.

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O., Hayashi, J.I., Watanabe, J., Miyashita, N., Petras, M.L., Tagashira, Y. (1981). Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Genetics 98, 801–816.

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, N., Migita, S., Bonhomme, F., Hjorth, J.P., Petras, M.L., Tagashira, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22, 222–226.

    Google Scholar 

  • Yonekawa, H., Gotoh, O., Tagashira, Y., Shi, L-I., Cho, W.S., Miyashita, N., Moriwaki, K. (1986). A hybrid origin of Japanese mice “Mus musculus molossinus”. Curr. Top. Microbiol. Immunol. 127, 62–67.

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, N., Matsushima, Y., Liming, S., Cho, W.S., Xiao-Lan, Z., Tagashira, Y. (1988). Hybrid origin of Japanese mice: “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNA. Mol. Biol. Evol. 5, 63–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, J., Cole, Y. & Pellicer, A. Phylogenetic relationships among laboratory and wild-origin Mus musculus strains on the basis of genomic DNA RFLPs. Mammalian Genome 4, 485–492 (1993). https://doi.org/10.1007/BF00364782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364782

Keywords

Navigation