Skip to main content
Log in

Regulation of dct genes in the Rhizobium meliloti-alfalfa interaction

  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to support symbiotic N2 fixation, Rhizobium meliloti must be able to utilize the C4-dicarboxylic acids provided by its legume host, alfalfa. These compounds are taken up via a single transport protein, DctA. Transcription from the dctA promoter is positively regulated by the DctB/DctD two-component system. In response to dicarboxylic acids, the transmembrane sensor DctB, activates the transcriptional activator DctD, which together with σ54 holoenzyme initiates transcription of dctA. In bacteroids an alternative mode of activation has also been implicated in dctA expression and the exact nature of this system remains to be elucidated. Evidence also suggests that expression of the dctA promoter can be influenced negatively by other DNA regulatory proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaway D., Motherway M., Boesten B. & O'Gara F. 1995. NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in Escherichia coli. FEMS Microbiology Letters 128, 241–245.

    Google Scholar 

  • Batista S., Castro S., Aguilar O. & Martinez-drets G. 1992 Induction of C4-dicarboxylate transport genes by external stimuli in Rhizobium meliloti. Canadian Journal of Microbiology 38, 51–55.

    Google Scholar 

  • Birkenhead K., Noonan B., Reville W., Boesten B., Manian S. & O'Gara F. 1990 Carbon utilization and regulation of N2 fixation genes in Rhizobium meliloti. Molecular Plant-Microbe Interactions 3, 167–173.

    Google Scholar 

  • Bolton E., Higgisson B., Harrington A. & O'Gara F. 1986 Dicarboxylic acid transport in Rhizobium meliloti: isolation of mutants and cloning of dicarboxylic acid transport genes. Archives of Microbiology 144, 142–146.

    Google Scholar 

  • DePhilip P., Boistard P., Schluter A., Patschkowski T., Puhler A., Priefer U., O'Gara F., Boesten B. & Noonan B. 1992 Developmental and metabolic regulation of N2 fixation gene expression in Rhizobium meliloti. Canadian Journal of Microbiology 38, 467–474.

    Google Scholar 

  • Finan T., Wood J. & Jordan C. 1981 Succinate transport in Rhizobium leguminosarum. Journal of Bacteriology 148, 193–202.

    Google Scholar 

  • Giblin L., Boesten B., Turk S., Hooykaas P. & O'Gara F. 1995 Signal transduction in the Rhizobium meliloti dicarboxylic acid transport system. FEMS Microbiology Letters 126, 25–30.

    Google Scholar 

  • Giblin, L. 1995 Genetic analysis of the C4-dicarboxylic acid transport gene, dctB, from Rhizobium meliloti. PhD dissertation, University College, Cork, Ireland.

  • Gu B., Lee J., Hoover T., Scholl D. & Nixon B. 1994 Rhizobium meliloti DctD, a σ54 transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module. Molecular Microbiology 13, 51–66.

    Google Scholar 

  • Huala E., Stigter J. & Ausubel F.M. 1992 The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription. Journal of Bacteriology 174, 1428–1431.

    Google Scholar 

  • Jiang J., Gu B., Albright L. & Nixon T. 1989 Conservation between coding and regulatory elements of Rhizobium meliloti and Rhizobium leguminosarum dct genes. Journal of Bacteriology 171, 5244–5253.

    Google Scholar 

  • Jording D. & Puhler A. 1993 The membrane topology of the Rhizobium meliloti C4-dicarboxylate permease (DctA) as derived from protein fusions with Escherichia coli K12 alkaline phosphatase (PhoA) and β-galatosidase (LacZ). Molecular and General Genetics 241, 106–114.

    Google Scholar 

  • Jording D., Sharma P.K., Schmidt R., Engelke T., Uhde C. & Puhler A. 1992 Regulatory aspects of the C4-dicarboxylate transport in Rhizobium meliloti: transcriptional activation and dependence on effective symbiosis. Journal of Plant Physiology 141, 18–27.

    Google Scholar 

  • Jording D., Uhde C., Schmidt R. & Puhler A. 1994 The C4-dicarboxylate transport system of Rhizobium meliloti and its role in N2 fixation during symbiosis with alfalfa (Medicago sativa). Experientia 50, 874–883.

    Google Scholar 

  • Labes M. & Finan T.M. 1993 Negative regulation of σ54 dctA expression by the transcriptional activator DctD. Journal of Bacteriology 175, 2674–2681.

    Google Scholar 

  • Labes M., Rastogi V., Watson R. & Finan T. 1993 Symbiotic N2 fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele. Journal of Bacteriology 175, 2662–2673.

    Google Scholar 

  • Ledebur H. & Nixon B.T. 1992 Tandem DctD binding sites of the Rhizobium meliloti dctA UAS are essential for optimal function despite a 50 to 100-fold difference in affinity for DctD. Molecular Microbiology 6, 3479–3492.

    Google Scholar 

  • Ledebur H., Gu B., SojdaIII J. & Nixon B.T. 1990 Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of σ54 dctA promoters. Journal of Bacteriology 172, 3888–3897.

    Google Scholar 

  • Lee J.H., Scholl D., Nixon B.T. & Hoover T.R. 1994 Constitutive ATP hydrolysis and transcriptional activation by a stable, truncated form of Rhizobium meliloti DCTD, a σ54 transcriptional activator. Journal of Biological Chemistry 269, 20401–20409.

    Google Scholar 

  • McGretrick A., Goulding C., Mannian S. & O'Gara F. 1985 Catabolite repression and role of cAMP in CO2 fixation and H2 metabolism in Rhizobium spp. Journal of Bacteriology 163, 1282–1284.

    Google Scholar 

  • Morett E. & Buck M. 1989 In Vivo studies on the interaction of RNA σ54 with the Klebsiella pneumoniae and Rhizobium meliloti nifH promoters. Journal of Molecular Biology 210, 65–77.

    Google Scholar 

  • Morett E. & Segovi aL. 1993 The σ54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. Journal of Bacteriology 175, 6067–6074.

    Google Scholar 

  • Morris L., Cannon W., Claverie-Martin F., Austin S. & Buck M. 1994 DNA distortion and nucleation of local DNA unwinding within sigma 54 (σ54) holoenzyme closed promoter complexes. Journal of Biological Chemistry 269, 11563–11571.

    Google Scholar 

  • O'Gara F., Birkenhead K., Boesten B. & Fitzmaurice A. 1989 Carbon metabolism and catabolite repression in Rhizobium spp. FEMS Microbiology Letters 63, 93–102.

    Google Scholar 

  • Parkinson J.S. & Kofoid E.C. 1992 Communication modules in bacterial signalling proteins. Annual Review of Genetics 26, 71–112.

    Google Scholar 

  • Reitzer L. & Magasanik B. 1986 Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45, 785–792.

    Google Scholar 

  • Ronson C., Lyttleton P. & Robertson J. 1981 C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proceedings of the National Academy of Science of the United States of America 78, 4284–4288.

    Google Scholar 

  • Ronson C.W., Astwood P.M. & Downie J.A. 1984 Molecular cloning and genetic organization of C4-dicarboxylate transport genes from Rhizobium leguminosarum. Journal of Bacteriology 160, 903–909.

    Google Scholar 

  • Ronson C.W., Astwood P.M., Nixon B.T. & Ausubel F.M. 1987a Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to N2 regulatory gene products. Nucleic Acids Research 15, 7921–7934.

    Google Scholar 

  • Ronson C.W., Nixon B.T., Albright L.M. & Ausubel F.M. 1987b Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. Journal of Bacteriology 169, 2424–2431.

    Google Scholar 

  • Wang Y., Birkenhead K., Boesten B., Manian S. & O'Gara F. 1989 Genetic analysis and regulation of the Rhizobium meliloti genes controlling C4-dicarboxylic acid transport. Gene 85, 135–144.

    Google Scholar 

  • Wang Y., Giblin L., Boesten B. & O'Gara F. 1993 The Escherichia coli cAMP receptor protein (CRP) represses the Rhizobium meliloti dctA promoter in a cAMP-dependent fashion. Molecular Microbiology 8, 253–259.

    Google Scholar 

  • Watson R. 1990 Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: Nucleotide sequence and deduced products of dctA, dctB, and dctD. Molecular Plant-Microbe Interactions 3, 174–181.

    Google Scholar 

  • Weiss D., Batut J., Klose K., Keener J. & Kustu S. 1991 The phosphorylated form of the enhancer-binding protein NtrC has an ATPase activity that is essential for activation of transcription. Cell 67, 155–167.

    Google Scholar 

  • yarosh O., Charles T. & Finan T. 1989 Analysis of C4-dicarboxylate transport genes in Rhizobium meliloti. Molecular Microbiology 3, 813–823.

    Google Scholar 

Download references

Authors

Additional information

J. Archdeacon and F. O'Gara are, and L. Giblin was with the Microbiology Department, University College, Cork, Ireland; L. Giblin is now with the Biochemistry Department, University College, Cork, Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giblin, L., Archdeacon, J. & O'Gara, F. Regulation of dct genes in the Rhizobium meliloti-alfalfa interaction. World Journal of Microbiology & Biotechnology 12, 151–156 (1996). https://doi.org/10.1007/BF00364679

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364679

Key words

Navigation