Skip to main content

Advertisement

Log in

Application of recombinant DNA technology to plant protection: molecular approaches to engineering virus resistance in crop plants

  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Developments in plant tissue culture, plant transformation and regeneration, and improvements in techniques to isolate and manipulate viral genes have led to the exploitation of the concept of ‘cross protection’: turning the virus onto itself and controlling it with its own genes. By introducing and expressing genes of viral origin in crop plants, scientists have engineered resistance to several plant viruses. Some of the approaches, used singly or in combination, include expression of viral-coat protein, untranslatable sense or antisense RNA, satellite RNA, virusspecific ‘neutralizing’ antibody genes, plant viral replicase, protease or movement proteins and defective, interfering RNA. All of these approaches have resulted in manifestation of virus resistance to varying degrees in several commercially important crop plants. This review summarizes the recent advances in engineering virus resistance using the above approaches, and lists specific examples of their use in cultivated crop plants of economic importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, E.J., Stark, D.M., Nelson, R.S., Powell, P.A., Tumer, N.E. & Beachy, R.N. 1989 Transgenic plants that express the coat protein genes of TMV and AIMV interfere with disease development of some non-related viruses. Phytopathology 79, 1284–1290.

    Google Scholar 

  • Anderson, J.M., Palukaitis, P. & Zaitlin, M. 1992 A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proceedings of the National Acdemy of Sciences of the United States of America 89, 8759–8763.

    Google Scholar 

  • Barker, H., Reavy, B., Kumar, A., Webster, K.D. & Mayo, M.A. 1992 Restricted virus multiplication in potatoes transformed with the coat protein gene of potato leafroll luteovirus: similarities with a type of host gene-mediated resistance. Annals of Applied Biology 120, 55–64.

    Google Scholar 

  • Barker, H., Webster, K.D., Jolly, C.A., Reavy, B., Kumar, A. & Mayo, M.A. 1994. Enhancement of resistance to potato leafroll virus multiplication in potato by combining the effects of host genes and transgenes. Molecular Plant-microbe Interactions 7, 528–530.

    Google Scholar 

  • Beachy, R.N., Loesch-Fries, S. & Tumer, N.E. 1990 Coat proteinmediated resistance against virus infection. Annual Review of Phytopathology 28, 451–474.

    Google Scholar 

  • Behr, R.M., Brown, M.G. & McClain, E.A. 1989 World Orange Juice Outlook, 1989–90 through 1998–99. Working paper 89-2. Gainesville: Economic Research Department, Florida Department of Citrus, University of Florida.

    Google Scholar 

  • Bejarano, E.R. & Lichtenstein, C.P. 1992 Prospects for engineering virus resistance in plants with antisense RNA. Trends in Biotechnology 10, 383–388.

    Google Scholar 

  • Braun, C.J. & Hemenway, C.L. 1992 Expression of amino-terminal portions of full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 4, 735–744.

    Google Scholar 

  • Buck, K.W. 1991 Virus-resistant plants. In Plant Genetic Engineering, ed Grierson, D. pp. 136–178. Glasgow: Blackie & Son.

    Google Scholar 

  • Carr, J.P. & Zaitlin, M. 1993 Replicase-mediated resistance. Seminars in Virology 4, 339–347.

    Google Scholar 

  • Chiang, A.N., Jilka, J.M., Hwang, D.-J. & Tumer, N.E. 1994. Analysis of resistance in transgenic potato expressing PVY protease (NIa) and replicase (NIb) genes. In Proceedings of the 13th Annual Meeting of the American Society for Virology, p. 250. University of Wisconsin, Madison, WI: American Society for Virology.

    Google Scholar 

  • Cooper, B., Lapidot, M., Heick, J., Beachy, R.N. & Dodds, J.A. 1994 Multi-virus resistance in transgenic tobacco plants expressing a tobacco mosaic virus dysfunctional movement protein. In Proceedings of the 13th Annual Meeting of the American Society for Virology, p. 250. University of Wisconsin, Madison, WI: American Society for Virology.

    Google Scholar 

  • Costa, A.S. & Muller, G.W. 1980 Tristeza control by cross protection: a US Brazil cooperation success. Plant Disease 64, 538–541.

    Google Scholar 

  • Cuozzo, M., O'Connell, K.M., Kaniewski, W., Fang, R.-X., Chua, H. & Tumer, N.E. 1988 Viral protection in transgenic tobacco plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6, 549–557.

    Google Scholar 

  • Day, A.G., Bejarano, E.R., Buck, K.W., Burrell, M. & Lichtenstein, C.P. 1991 Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proceedings of the National Academy of Sciences of the United States of America 88, 6721–6725.

    Google Scholar 

  • DeHaan, P., Gielen, J.J.L., Prins, M., Wijkamp, I.G., vanSchepen, A., Peters, D., vanGrinsven, M.Q.J.M. & Goldbach, R. 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10, 1133–1137.

    Google Scholar 

  • Deom, C.M., Lapidot, M. & Beachy, R. 1992 Plant virus movement proteins. Cell 69, 221–224.

    Google Scholar 

  • Dougherty, W.G. & Semler, B.L. 1993 Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes. Microbiological Reviews 57, 781–822.

    Google Scholar 

  • Fitch, M.M.M., Manshardt, R.M., Gonsalves, D., Slightom, J.L. & Sanford, J.C. 1992 Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10, 1466–1472.

    Google Scholar 

  • fitchen, J.H. & Beachy, R.N. 1993 Genetically engineered protection against viruses in transgenic plants. Annual Review of Microbiology 47, 739–763.

    Google Scholar 

  • Fraley, R.T., Rogers, S.G.,& Horsch, R.B. 1985 Genetic transformation of higher plants. CRC Critical Reviews in Plant Science 4, 1–46.

    Google Scholar 

  • Gielen, J.J.L., DeHaan, P., Kool, A.J., Peters, D., VanGrinsven, M.Q.J.M. & Goldbach, R.W. 1991 Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio/Technology 9, 363–367.

    Google Scholar 

  • Gingery, R.E. 1988 The rice stripe virus group. In ed. Milne, R.G. The Plant Viruses Vol. 4 pp. 297–329. New York: Plenum.

    Google Scholar 

  • Goldbach, R. & DeHaan, P. 1993 Prospects of engineered forms of resistance against tomato spotted wilt virus. Seminars in Virology 4, 381–387.

    Google Scholar 

  • Golemboski, D.B., Lomonossoff, G.P. & Zaitlin, M. 1990 Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proceedings of the National Academy of Sciences of the United States of America 87, 6311–6315.

    Google Scholar 

  • Gonsalyes, D., Chee, P., Provvident, R., Seem, R. & Slightom, J.L. 1992 Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Bio/Technology 10, 1562–1570.

    Google Scholar 

  • Guiterrez, E.A., Moore, G.A., Jacano, C., McCaffery, M. & Cline, K. 1992. Production of transgenic citrus plants expressing citrus tristeza virus coat protein. Phytopathology 82, 1148.

    Google Scholar 

  • Hamilton, R.I. 1980 Defenses triggered by previous invaders: viruses. In Plant Disease: an Advanced Treatise, Vol. 5, eds Horsfall, J.G. & Cowling, E.B. pp. 279–303. New York: Academic Press.

    Google Scholar 

  • Harrison, B.D., Mayo, M.A. & Baulcombe, D.C. 1987 Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328, 799–801.

    Google Scholar 

  • Hayakawa, T., Zhu, Y., Itoh, K., Kimura, Y. & Izawa, T. 1992 Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proceedings of the National Academy of Sciences of the United States of America 89, 9865–9869.

    Google Scholar 

  • Hill, K.K., Jarvis-Eagen, N.J., Halk, E.L., Krahn, K.J., Liao, L.W., Mathewson, R.S., Merlow, D.J., Nelson, S.E., Rashka, K.E. & Liesch-Fries, L.S. 1991 The development of virus-resistant alfalfa, Medicago sativa L. Bio/Technology 9, 373–377.

    Google Scholar 

  • Hillman, B.I., Carrington, J.C. & Morris, T.J. 1987 A defective interfering RNA that contains a mosaic of plant virus genome. Cell 51, 427–433.

    Google Scholar 

  • Hoekema, A., Huisman, M.J., Molendijk, L., Van DenElzen, P.J.M. & Cornelissen, B.J.C. 1989 The genetic engineering of two commercial potato cultivars for resistance to potato virus X. Bio/Technology 7, 272–278.

    Google Scholar 

  • Hull, R. & Davies, J.W. 1992 Approaches to nonconventional control of plant virus diseases. Critical Reviews in Plant Sciences 11, 17–33.

    Google Scholar 

  • Jacquemond, M., Amselem, J. & Tepfer, M. 1988 A gene coding for a monomeric form of cucumber mosaic virus satellite RNA confers tolerance to CMV. Molecular Plant-microbe Interactions 1, 311–316.

    Google Scholar 

  • Jongedijk, E., Huisman, M.J. & Cornelissen, B.J.C. 1993 Agronomic performance and field resistance of genetically modified, virusresistant potato plants. Seminars in Virology 4, 407–416.

    Google Scholar 

  • Kaper, J.M. & Collmer, C.W. 1988. Modulation of viral plant diseases by secondary RNA agents. In RNA Genetics eds Domingo, E., Holland, J.J. & Ahlquist, P. pp. 171–194. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kaniewski, W., Lawson, C., Sammons, B., Haley, L., Hart, K., Delannay, X. & Tumer, N.E. 1990 Field resistance of transgenic Russet Burbank potato to effects of infection by potato virus X and potato virus Y. Bio/Technology 8, 750–754.

    Google Scholar 

  • Kaniewski, W., Lawson, C., Loveless, J., Thomas, P., Mowry, T., Reed, G., Mitsky, T. Zalewski, J. & Muskopf, Y. 1994 Expression of potato leafroll virus (PLRV) replicase genes in Russet Burbank potatoes provide field immunity to PLRV. In Proceedings of the 13th Annual Meeting of the American Society for Virology, p. 107. University of Wisconsin, Madison, WI: American Society for Virology.

    Google Scholar 

  • Kaniewski, W.K. & Thomas, P.E. 1993 Field testing of virus resistant transgenic plants. Seminars in Virology 4, 389–396.

    Google Scholar 

  • Kawchuk, L.M., Martin, R.R. & McPherson, J. 1990 Resistance in transgenic potato expressing the potato leafroll virus coat protein gene. Molecular Plant-microbe Interactions 3, 301–307.

    Google Scholar 

  • Kawchuk, L.M., Martin, R.R. & McPherson, J. 1991 Sense and antisense RNA-mediated resistance to potato leafroll virus in Russet Burbak potato plants. Molecular Plant-microbe Interactions 3, 247–253.

    Google Scholar 

  • Kim, J.W., Sun, S.S.M. & German, T.L. 1994 Disease resistance in tobacco and tomato plants transformed with the tomato spotted wilt virus nucleocapsid gene. Plant Disease 78, 615–621.

    Google Scholar 

  • Knoke, J.L., Gingery, R.E. & Louie, R. 1992 Maize dwarf mosaic, maize chlorotic dwarf, and maize streak. In Plant Diseases of International Importance: Diseases of Cereals and Pulses, eds Singh, U.S., Mukhopadhyay, A.N., Kumar, J. & Chaube, H.S. pp. 235–281. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Kollar, A., Dalmay, T. & Burgyan, J. 1993 Defective interfering RNA-mediated resistance against cymbidium ringspot tombusvirus in transgenic plants. Virology 193, 313–318.

    Google Scholar 

  • Kunik, T., Salomon, R., Zamir, D., Navot, N., Zeidan, M., Michelson, I., Gafni, Y. & Czosnek, D. 1994 Transgenic tomato plants expressing the tomato yellow leafcurl virus capsid protein are resistant to the virus. Bio/Technology 12, 500–504.

    Google Scholar 

  • Lapidot, M., Gafny, R., Ding, R., Wolf, S., Lucas, W.J. & Beachy, R.N. 1993 A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant Journal 4, 959–970.

    Google Scholar 

  • Lawson, C., Kaniewski, W., Haley, L., Rozman, R., Newell, C., Sanders, P. & Tumer, N.E. 1990 Engineering resistance to multiple virus infection in a commercial potato cultivar: resistance to potato virus X and potato virus Y in transgenic Russet Burbank potato. Bio/Technology 8, 127–134.

    Google Scholar 

  • Lee, R.F., Roistacher, C.N., Niblett, C.L., Lastra, R., Rocha-Pena, M., Garnsey, S.M., Yokomi, R.K., Gumpf, D.J. & Dodds, J.A. 1992 Presence of Toxoptera citricida in Central America: a threat to citrus industry in florida and the United States. Citrus Industry 73, 13, 24, 62 and 63.

    Google Scholar 

  • Lindbo, J.A., Silva-Rosales, L. & Dougherty, W.G. 1993 Pathogenderived resistance to potyviruses: working but why? Seminars in Virology 4, 369–379.

    Google Scholar 

  • Ling, K., Namba, S., Gonsalves, C., Slightom, J.L. & Gonsalves, D. 1991 Protection against detrimental effects of potyvirus infection in transgenic tobacco plants expressing the papaya ringspot virus coat protein gene. Bio/Technology 9, 752–758.

    Google Scholar 

  • Lister, R.M., Vincent, J.R., Lei, C.-H., McGrath, P.F., Larkins, B.A., Torbert, K.A., Pawlowski, W.P., Rines, H.R. & Somers, D.A. 1994a Coat protein mediated resistance to barley yellow dwarf virus in oats. Phytopathology 84, 1117.

    Google Scholar 

  • Lister, R.M., Vincent, J.R., McGrath, P.F., Lemaux, P.G. & Wan, Y. 1994b Coat protein mediated resistance to barley yellow dwarf virus in barley. Phytopathology 84, 1117.

    Google Scholar 

  • Litz, R.E. & Gray, D.J. 1995 Somatic embryogenesis for agricultural improvement. World Journal of Microbiology and Biotechnology 11, 416–425.

    Google Scholar 

  • Lodge, J., Kaniewski, W.K. & Tumer, N.E. 1993 Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proceedings of the National Academy of Sciences of the United States of America 90, 7089–7093.

    Google Scholar 

  • Loesch-Fries, L.S., Merlo, D., Zinnen, T., Burhop, L., Hill, K., Krahn, K., Jarvis, N., Nelson, S. & Halk, E. 1987 Expression of alfalfa mosaic virus RNA4 in transgenic plants confers virus resistance. EMBO Journal 7, 1845–1851.

    Google Scholar 

  • Longstaff, M., Brignet, G., Boccard, F., Chapman, S. & Baulcombe, D. 1993 Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO Journal 12, 379–386.

    Google Scholar 

  • MacFarlane, S.A. & Davies, J.W. 1992 Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection. Proceedings of the National Academy of Sciences of the United States of America 89, 5829–5833.

    Google Scholar 

  • MacKenzie, D.J. & Ellis, P.J. 1992 Resistance to tomato spotted wild virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Molecular Plant-microbe Interactions 5, 34–40.

    Google Scholar 

  • MacKenzie, D.J., Tremaine, J.H. & McPherson, J. 1991 Genetically engineered resistance to potato virus S in potato cultivar Russet Burbank. Molecular Plant-microbe Interactions 4, 95–102.

    Google Scholar 

  • McKinney, H.H. 1929 Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research 39, 557–578.

    Google Scholar 

  • Maiti, I.B., Murphy, J.F., Shaw, J.G. & Hunt, A.G. 1993 Plants that express a potyvirus proteinase gene are resistant to virus infection. Proceedings of the National Academy of Sciences of the United States of America 90, 6110–6114.

    Google Scholar 

  • Malyshenko, S.I., Kondakova, O.A., Nazarova, J.V., Kaplan, I.B., Taliansky, M.E. & Atabekov, J.G. 1993 Reduction of tobacco mosaic virus accumulation in transgenic plants producing nonfunctional viral transport proteins. Journal of General Virology 74, 1149–1156.

    Google Scholar 

  • Matthews, R.E.F. 1991 Plant Virology, 3rd edn. New York: Academic Press.

    Google Scholar 

  • Moffat, A.S. 1994 Developing nations adapt biotech for own needs. Science 265, 186–187.

    Google Scholar 

  • Murry, L.E., Elliott, L.G., Capitant, S.A., West, J.A., Hanson, K.K., Scarafia, L., Johnston, S., DeLuca-Flaherty, C., Nichols, S., Cunanan, D., Dietrich, P.S., Mettler, I.J., Dewald, S., Warnick, D.A., Rhodes, C., Sinibaldi, R.M. & Brunke, K.J. 1993 Transgenic com plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Bio/Technology 11, 1559–1564.

    Google Scholar 

  • Namba, S., Ling, K.H., Gonsalves, C., Gonsalves, D. & Slightom, J.L. 1991 Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain Wl appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107, 181–188.

    Google Scholar 

  • Nejidat, A. & Beachy, R.N. 1989 Decreased levels of TMV coat protein in transgenic tobacco plants at elevated temperatures reduce resistance to TMV infection Virology 173, 531–538.

    Google Scholar 

  • Nelson, R.S., McCormick, S.M., Delannay, X., Dube, P., Layton, J., Anderson, E.J., Kaniewska, M., Proksch, R.K., Horsch, R.B., Rogers, S.G., Fraley, R.T. & Beachy, R.N. 1988 Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Bio/Technology 6, 403–409.

    Google Scholar 

  • Palukaitis, P. & Zaitlin, M. 1984 A model to explain the ‘crossprotection’ phenomenon shown by plant viruses and viroids. In Plant-microbe Interaction: Molecular and Genetic Perspectives, eds Kosuge, T. & Nester, E.W. pp. 420–429. New York: Macmillan

    Google Scholar 

  • Pang, S.-Z., Bock, J.H., Gonsalves, C., Slightom, J.L. & Gonsalves, D. 1994 Resistance of transgenic Nicotiana benthamiana plants to tomato spotted wilt and impatient necrotic spot tospoviruses: evidence of involvement of the N protein and N gene RNA in resistance. Phytopathology 84, 243–249.

    Google Scholar 

  • Powell-Abel, P., Nelson, R.S., De, B., Hoffman, N., Rogers, S.G., Fraley, R.T. & Beachy, R.N. 1986 Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232, 738–743.

    Google Scholar 

  • Quemada, H.D., Gonsalves, D. & Slightom, J.L. 1991 Expression of coat protein gene from cucumber mosaic virus strain C in tobacco: protection against infections by CMV strains transmitted mechanically or by aphids. Phytopathology 81, 794–802.

    Google Scholar 

  • Rast, A.T.B. 1972 MII-16, and artificial symptomless mutant of tobacco mosaic virus for seedling inoculation of tomato plants. Netherlands Journal of Plant Pathology 78, 110–112.

    Google Scholar 

  • Reavy, B. & Mayo, M.A. 1993 Genetic engineering of virus resistance. In Plant Genetic Manipulation for Crop Protection, eds Gatehouse, A.M.R., Hilder, V.A. & Boulter, D. pp. 183–214. Wallingford, UK: CAB International.

    Google Scholar 

  • Roistacher, C.N. & Moreno, P. 1991 The world-wide threat from destructive isolates of citrus tristeza virus-a review. In Proceedings of the 11th Conference of the International Organization of Citrus Virologists, eds Brlansky, R.L., Lee, R.F. & Timmer, L.W. pp. 7–19. Riverside, CA: International Organization of Citrus Virologists.

    Google Scholar 

  • Rubino, L., Lupo, R. & Russon, M. 1993 Resistance to cymbidium ringspot tombus virus infection in transgenic Nicotiana benthamiana plants expressing a full-length viral replicase gene. Molecular Plant-microbe Interactions 6, 729–734.

    Google Scholar 

  • Sanders, P.R., Sammons, B., Kaniewski, W.K., Haley, L., Layton, J., LaVallee, B.J., Delannay, X. & Tumer, N.E. 1992 Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82, 683–690.

    Google Scholar 

  • Sanford, J.C. & Johnston, S.A. 1985 The concept of parasitederived resistance genes from the parasite's own genome. Journal of Theoretical Biology 113, 395–405.

    Google Scholar 

  • Schell, J.L., Pappu, H.R., Pappu, S.S., Derrick, K.S., Lee, R.F., Niblett, C.L. & Grosser, J.W. 1994 Transformation of Nova Tangelo with the coat protein gene of citrus tristeza closterovirus. Phytopathology 84, 1076.

    Google Scholar 

  • Scholthof, K.-B.G., Scholthof, H.B. & Jackson, A.O. 1993 Control of plant virus diseases by pathogen-derived resistance in transgenic plants. Plant Physiology 101, 7–12.

    Google Scholar 

  • Somers, D.A., Rines, H.W., Gu, W., Kaeppler, H. & Bushnell, W.R. 1992 Fertile, transgenic oat plants. Bio/Technology 10, 1589–1594.

    Google Scholar 

  • Tavladoraki, P., Benvenuto, E., Trinca, S., DeMartinis, D., Cattaneo, A. & Galeffi, P. 1993 Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366, 469–472.

    Google Scholar 

  • Tien, P. & Wu, G.S. 1991 Satellite RNA for the biocontrol of plant disease. Advances in Virus Research 39, 321–339.

    Google Scholar 

  • Truve, E., Aapollu, A., Honkanen, J., Puska, R., Mehto, M., Hassi, A., Teeri, T.H., Kelve, M., Seppanen, P. & Saarma, M. 1993 Transgenic potato plants expressing mammalian 2′–5′ oligoadenylate synthetase are protected from potato virus X infection under field conditions. Bio/Technology 11, 1048–1952.

    Google Scholar 

  • Tumer, N.E., O'Connell, K.M., Nelson, R.S., Sanders, P.R., Beachy, R.N., Fraley, R.T. & Shah, D.M. 1987 Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and tomato plants. EMBO Journal 6, 1181–1188.

    Google Scholar 

  • Van DenElzen, P.J.M., Huisman, M.J., Willink, D.P.-L., Jongedijk, E., Hoekema, A. & Cornelissen, B.J.C. 1989 Engineering virus resistance in agricultural crops. Plant Molecular Biology 13, 337–346.

    Google Scholar 

  • Van DerWilk, F., Eillink, D.P.-L., Huisman, M.J., Huttinga, H. & Goldbach, R. 1991 Expression of the potato leafroll luteovirus coat protein gene in transgenic potato plants inhibits viral infection. Plant Molecular Biology 17, 431–439.

    Google Scholar 

  • VanDun, C.M.P., Pol, J.F. & VanVloten-Doting, L. 1987 Expression of alfalfa mosaic virus and tobacco rattle virus coat protein genes in transgenic tobacco plants. Virology 159, 299–305.

    Google Scholar 

  • Wan, Y. & Lemaux, P.G. 1994 Generation of large numbers of independently transformed fertile barley plants. Plant Physiology 104, 37–48.

    Google Scholar 

  • Wang, H.-L., Yeh, S.-D., Chiu, R.-J. & Gonsalves, D. 1987 Effectiveness of cross protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant Disease 71, 491–497.

    Google Scholar 

  • Wilson, T.M.A. 1993 Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proceedings of the National Academy of Sciences of the United States of America 90, 3134–3141.

    Google Scholar 

  • Yeh, S.-D. & Gonsalves, D. 1984 Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74, 1086–1091.

    Google Scholar 

  • Yeh, S.-D., Gonsalves, D., Wang, H.L., Namba, R. & Chiu, R.J. 1988 Control of papaya ringspot virus cross protection. Plant Disease 72, 375–380.

    Google Scholar 

  • Yie, Y. & Tien, P. 1993 Plant virus satellite RNAs and their role in engineering resistance to virus diseases. Seminars in Virology 4 363–368.

    Google Scholar 

  • Yie, Y., Zhao, F., Zhao, S.Z., Liu, Y.Z., Liu, Y.L. & Tien, P. 1992 Transgenic commerical tobacco cultivar G-140 with high resistance to cucumber mosaic virus conferred by expressing satellite RNA and coat protein. Molecular Plant-microbe Interactions 5, 460–465.

    Google Scholar 

  • Zapata-Arias, F.J., Torrizo, L.B. & Ando, A. Current developments in plant biotechnology for genetic improvement: the case of rice (Oryza sativa L.) 1995 World Journal of Microbiology and Biotechnology 11, 393–399.

    Google Scholar 

Download references

Authors

Additional information

H.R. Pappu and C.L. Niblett are with the Plant Pathology Department, University of Florida. Gainesville, FL 32611-0680, USA; R.F. Lee is with the Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA. Florida Agricultural Experiment Station Journal Series No. R-04558.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappu, H.R., Niblett, C.L. & Lee, R.F. Application of recombinant DNA technology to plant protection: molecular approaches to engineering virus resistance in crop plants. World Journal of Microbiology & Biotechnology 11, 426–437 (1995). https://doi.org/10.1007/BF00364618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364618

Key words

Navigation