AharoniD. Bar-YosephP. 1992: Mixed finite element formulations in the time domain for solution of dynamic problems. Comput. Mech. 9, 359–374
Google Scholar
Bar-YosephP. 1989: Space-time discontinuous finite element approximations for multi-dimensional nonlinear hyperbolic systems. Comput. Mech. 5, 149–160
Google Scholar
Bar-YosephP.; MosesE; ZrahiaU.; YarinL. 1995: Space-time spectral element methods for one dimensional nonlinear advection-diffusion problems. J. Comput. Phys. 118, 62–74
Google Scholar
BaruchM.; RiffR. 1984: Time finite element discretization of Hamilton's law of varying action. AIAA J. 22, 1310–1318
Google Scholar
BoriM.; MelloF. J.; AtluriS. N. 1990: Variational approaches for dynamics and time-finite-elements: numerical studies. Comput. Mech. 7, 49–76
Google Scholar
BorriM.; MelloF. J.; AtluriS. N. 1991: Primal and mixed forms of Hamilton's principle for constrained rigid body systems: numerical studies. Comput. Mech 7, 205–220
Google Scholar
CorlessR. M. 1992: Defect-controlled numerical methods and shadowing for chaotic differential equations. Physica D, 60, 323–334
Google Scholar
CorlessR. M. 1994: What good are numerical simulations of chaotic dynamical systems?. Comput. Math. Appl. 28, 107–121
Google Scholar
CorlessR. M.; EssexC.; NerenbergM. A. H. 1991: Numerical methods can suppress chaos. Phys. Letters A 157, 27–36
Google Scholar
Fletcher, C. A. J. 1991: Computational techniques for fluid dynamics. Springer-Verlag, 2nd edition, Vol. 1, 355–360
GriffithsD. F.; SwebyP. K.; YeeH. C. 1992: On spurious asymptotic numerical solutions of explicit Runge-Kutta methods. IMA J. Numer. Analysis 12, 319–338
Google Scholar
HiraiK.; AdachiT. 1994: Chaos and bifurcation in numerical computation by the Runge-Kutta method. Int. J. Systems Sci. 11, 1695–1706
Google Scholar
HulbertG. M.; HughesT. J. R. 1990: Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Eng. 84, 327–348
Google Scholar
HumphriesA. R. 1993: Spurious solutions of numerical methods for initial value problems. IMA J. Numer. Analysis 13, 263–290
Google Scholar
JohnsonC. 1993: Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 107, 117–129
Google Scholar
KohC. G.; LiawC. Y. 1991: Effects of time step size on the response of a bilinear system, I: Numerical study. J. Sound & Vibration 144, 17–29
Google Scholar
LorenzE. N. 1989: Computational chaos — a prelude to computational instability. Physica D 35, 299–317
Google Scholar
MelloF. J.; BorriM.; AtluriS. N. 1990: Time finite element methods for large rotational dynamics of multibody systems. Comput. & Struct. 37, 231–240
Google Scholar
MoorthyR. I. K.; KakodkarA.; SrirangarajanH. R.; SuryanarayanS. 1993: An assessment of the Newmark method for solving chaotic vibrations of impacting oscillators. Comput. & Struct. 49, 597–603
Google Scholar
NatsiavasS. 1990: On the dynamics of oscillators with bi-linear damping and stiffness. Int. J. Non-Linear Mechanics 25, 535–554
Google Scholar
PateraA. T. 1984: A spectral element method for fluid dynamics; laminar flow in a channel expansion. J. Comput. Phys. 54, 468–488
Google Scholar
ReinhallP. J.; CaugheyT. K.; StortiD. W. 1989: Order and chaos in a discrete Duffing oscillator-implications on numerical integration. J. Appl. Mech. 56, Trans. ASME, 162–167
Google Scholar
ShawS. W.; HolmesP. 1983: A periodically forced piecewise linear oscillator. J. Sound & Vibration 90, 129–155
Google Scholar
ThompsonJ. M. T. 1983: Complex dynamics of compliant off-shore structures. Proc. R. Soc. Lond. 387, 407–427
Google Scholar
TongueB. H. 1987: Characteristics of numerical simulations of chaotic systems. J. Appl. Mech. 54, Trans. ASME, 695–699
Google Scholar
YeeH. C.; SwebyP. K.; GriffithsD. F. 1991: Dynamical approach study of spurious steady state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics. J. Comput. Phys. 97, 249–310
Google Scholar
ZrahiaU.; Bar-YosephP. 1994: Space-time spectral element method for solution of second-order hyperbolic equations. Comput. Methods Appl. Mech. Eng. 116, 135–146
Google Scholar