Skip to main content
Log in

Finite strain elasto-plastic formulations using the method of mixed interpolation of tensorial components

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we review our latest developments in the field of finite strain elastoplastic analysis using the method of mixed interpolation of tensorial components (MITC). In particular we review our 2D element, the QMITC-TLH, and our shell element, the MITC4-TLH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AhmadS.; IronsB. M.; ZienkiewiczO. C. 1970: Analysis of thick and thin shell structures by curved finite elements. Int. J. Num. Meth. Engrg., 2, 419–451

    Google Scholar 

  • AnandL. 1979: On Hencky's approximate strain-energy function for moderate deformations. J. Appl. Mech., 46, 78–82

    Google Scholar 

  • ArgyrisJ. H.; DoltsinisJ. St. 1979: On the large strain inelastic analysis in natural formulation. Part I. Quasistatic problems. Comput. Methods Appl. Mech. Engrg., 20, 213–251

    Google Scholar 

  • ArgyrisJ. H.; DoltsinisJ. St. 1980: On the large strain inelastic analysis in natural formulation. Part II. Dynamic problems. Comput. Methods Appl. Mech. Engrg., 21, 91–126

    Google Scholar 

  • AtluriS. N. 1984: Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations for computational analysis of finitely deformed solids, with applications to plates and shells. Part I. Comput. & Struct., 18, 93–116

    Google Scholar 

  • AlturiS. N. 1985: An endochronic approach and other topics in small and finite deformation computational elasto-plasticity. In: Bergan et al (Eds.), Finite Element Methods for Nonlinear Problems, 143–162, Springer, Berlin

    Google Scholar 

  • BatheK. J. 1982: Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • BatheK. J.; DvorkinE. N. 1985: A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int. J. Num. Meth. Engrg., 21, 367–383

    Google Scholar 

  • BatheK. J.; DvorkinE. N. 1986: A formulation of general shell elements — the use of mixed interpolation of tensorial components. Int. J. Num. Meth. Engrg., 22, 697–722

    Google Scholar 

  • CrisfieldM. A. 1995: Incompatible modes, enhanced strain and substitute strains for continuum elements. In: N.-E.Wiberg (Ed.), Advances in Finite Element Technology, 47–61, CIMNE, Barcelona

    Google Scholar 

  • DvorkinE. N. 1995: Nonlinear analysis of shells using the MITC formulation. Archives of Computational Methods in Engineering, 2, 1–50

    Google Scholar 

  • DvorkinE. N.; AssanelliA. P. 1990: Elasto-plastic analysis using a quadrilateral 2D element based on mixed interpolation of tensorial components. In: OwenD. R. J. et al (Eds.), Proc. Second International Conference on Computational Plasticity, 263–283, Pineridge Press, Swansea

    Google Scholar 

  • DvorkinE. N.; AssanelliA. P.; ToscanoR. G. 1996: Performance of the QMITC element in 2D elasto-plastic analysis, Comput. & Struct., 58, 1099–1129

    Google Scholar 

  • DvorkinE. N.; BatheK. J. 1984: A continuum mechanics based four node shell element for general nonlinear analysis. Engrg. Comput., 1, 77–88

    Google Scholar 

  • DvorkinE. N.; GoldschmitM. B.; PantusoD.; RepettoE. A. 1994: Comentarios sobre algunas herramientas utilizadas en la resolución de problemas no-lineales de mecánica del continuo. Rev. Int. de Met. Numéricos para Cálc. y Diseño en Ingeniería, 10, 47–65

    Google Scholar 

  • DvorkinE. N.; PantusoD.; RepettoE. A. 1994: A finite element formulation for finite strain elasto-plastic analysis based on mixed interpolation of tensorial components. Comp. Meth. Appl. Mech. and Engrg., 114, 35–54

    Google Scholar 

  • DvorkinE. N.; PantusoD.; RepettoE. A. 1995: A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput. Mech. Engrg., 125, 17–40

    Google Scholar 

  • DvorkinE. N.; VassoloS. I. 1989: A quadrilateral 2D finite element based on mixed interpolation of tensorial components. Eng. Comput., 6, 217–224

    Google Scholar 

  • EterovicA. L.; BatheK. J. 1990: A hyperelastic based large strain elasto-plastic constitutive formulation with combined isotropic/kinematic hardening using the logarithmic stress and strain measures. Int. J. Num. Meth. Engrg., 30, 1099–1114

    Google Scholar 

  • HillR. 1978: Aspects of invariance in solid mechanics. Advances in Appl. Mechs., 18, 1–75

    Google Scholar 

  • ImS.; AtluriS. N. 1987: A study of two finite strain plasticity models: an internal time theory using Mandel's director concept, and a general isotropic/kinematic-hardening theory. Int. J. of Plasticity, 3, 163–191

    Google Scholar 

  • LeeE. H. 1969: Elastic plastic deformation at finite strain. J. Appl. Mech., 36, 1–6

    Google Scholar 

  • LeeE. H.; LiuD. T. 1967: Finite strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys., 38, 17–27

    Google Scholar 

  • Mac NealR. H. 1987: A theorem regarding the locking of four-noded membrane elements. Int. J. Num. Meth. Engrg., 24, 1793–1799

    Google Scholar 

  • MalvernL. E. 1969: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • MarsdenJ. E.; HughesT. J. R. 1983: Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • OrtizM.; SimoJ. C. 1986: An analysis of a new class of integration algorithms for elastoplastic constitutive relations. Int. J. Num. Meth. Engrg., 23, 353–366

    Google Scholar 

  • SimoJ. C. 1988a: A Framework for finite strain elasto-plasticity based on maximun plastic dissipation and the multiplicative decomposition. Part I: Continuum formulation. Comput. Methods Appl. Mech. Engrg., 66, 199–219

    Google Scholar 

  • SimoJ. C. 1988b: A Framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects. Comput. Methods Appl. Mech. Engrg., 68, 1–31

    Google Scholar 

  • SimoJ. C.; MarsdenJ. E. 1984: On the rotated stress tensor and the material version of the Doyle Ericksen formula. Arch. Rat. Mechs. Anal., 86, 213–231

    Google Scholar 

  • SimoJ. C.; OrtizM. 1985: A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations. Comput. Methods Appl. Mech. Engrg., 49, 221–245

    Google Scholar 

  • SimoJ. C.; TaylorR. L. 1985: Consistent tangent operators for rate-independent plasticity. Comput. Methods Appl. Mech. Engrg., 48, 101–118

    Google Scholar 

  • SimoJ. C.; TaylorR. L. 1986: A return mapping algorithm for plane stress elasto-plasticity. Int. J. Num. Meth. Engrg., 22, 649–670

    Google Scholar 

  • SussmanT.; BatheK. J. 1987: A finite element formulation for nonlinear incompressible elastic and inelastic analysis, Comput. & Struct., 26, 829–855

    Google Scholar 

  • TruesdellC.; NollW. 1965: The nonlinear field theories of mechanics. In: Encyclopedia of Physics, Springer, Berlin

    Google Scholar 

  • ZienkiewiczO. C.; and TaylorR. L. 1989: The Finite Element Method, 4th Edn., vol. 1, McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 26 March 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvorkin, E.N. Finite strain elasto-plastic formulations using the method of mixed interpolation of tensorial components. Computational Mechanics 18, 290–301 (1996). https://doi.org/10.1007/BF00364144

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364144

Keywords

Navigation