Skip to main content
Log in

The flow field of two stratified liquids in the presence of interfacial waves

  • Originals
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Generated interfacial waves are under investigation in this paper. The flow field and the movement of the interface between two stratified newtonian fluids will be considered. Cylindrical geometry is examined. All results are given in an analytical form. With the help of an algebraic computation programm it is possible to reduce computation time for parameter studies. The dependence of the wavenumber of several dimensionless groups are studied intensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a( j), b( j):

integration constants

 :

wave amplitude at the origin

g :

acceleration due to gravity

h :

interface distortion

i :

imaginary unit

J 0, J 1 :

zero/first order Bessel function

k 1, k 1(j), k 2(j):

complex wave numbers

p(j):

pressure

t :

time

v jr , v jz :

velocity component in r and z direction

Re(j), Bo, We :

Reynolds, Bond and Weber number

R ρ :

density ratio

λ :

wavelength

µj, v j :

dynamic/kinematic fluid viscosity

ρj :

fluid density

σ :

interfacial tension

τ :

non dimensional time

Φj :

potential function

ψj :

stream function

References

  • AiryG. B. 1845: Tides and waves. Encyclopedia Metropolitana 5: 241–396

    Google Scholar 

  • Cauchy, A. 1815: Théorie de la propagation des ondes à la surface d'un fluide pesant d'une profondeur indéfinite. Œuvres complètes d'Augustin Cauchy. I. série: 5–318

  • GerstnerF. 1809: Theorie der Wellen. Gilberts Annalen der Physik 32: 412–445

    Google Scholar 

  • Graham-EagleJ. 1983: A new method for calculating eigenvalues with applications to gravity-capillary waves with edge constraints. Math. Proc. Camb. Phil. Soc. 94: 553–564

    Google Scholar 

  • GrovesM. D. 1995: Theoretical aspects of gravity-capillary waves in non-rectangular channels. J. Fluid Mech. 290: 377–404

    Google Scholar 

  • KockE.; OlsonL. G. 1994: A variational approach for modelling surface tension effects in inviscid fluids. Computational Mechanics, 14: 140–153

    Google Scholar 

  • LambSir H. 1932: Hydrodynamics. New York: Dover Publications

    Google Scholar 

  • LambK. G.; TentiG.; HuiW. H. 1987: General theory of wavemaker I. Z. Angew. Math. Phys. 38: 391–408

    Google Scholar 

  • Laplace, P. S. Marquis de 1776: Mémoires de l'academie rocale des sciences année 1776. Paris

  • LevichV. G. 1962: Physicochemical Hydrodynamics. Englewood Cliffs, N.Y.: Prentice-Hall Inc.

    Google Scholar 

  • MilgramH. J.; BradleyR. G. 1971: The determination of the interfacial tension between two liquids. J. Fluid Mech. 50: 469–480

    Google Scholar 

  • Newton, Sir I. 1726: Philosophiae naturalis principia mathematica. Prop. 45 et 46

  • ScottJ. C. 1981: The propagation of capillary-gravity waves on a clean water surface. J. Fluid Mech. 108: 127–131

    Google Scholar 

  • ThomsonSir. W. (Lord Kelvin) 1871: Hydrokinetic solutions and observations. Philos. Mag. 42: 362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, 27 March 1996

J=1, 2, where the index 1 refers to the upper fluid and the index 2 refers to the lower fluid. In the text the asterisk indicates non dimensional quantities.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordbrock, U., Delgado, A. & Rath, H.J. The flow field of two stratified liquids in the presence of interfacial waves. Computational Mechanics 18, 279–289 (1996). https://doi.org/10.1007/BF00364143

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364143

Keywords

Navigation