Skip to main content
Log in

Möglichkeiten der Konzentrierung von Stoffen in biologischen Gegenstromsystemen

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

It was shown by model experiments that:

  1. 1.

    A countercurrent system with permeable walls can multiply a single concentration effect by diffusion (diffusion multiplier), if the single effect is produced by evaporation of water;

  2. 2.

    A countercurrent system with semipermeable walls can multiply a single concentration effect by osmosis (osmotic multiplier), if the single effect is produced by addition of an osmotic substance.

By reason of these results a new hypothesis of the concentration mechanism in the kidney is presented: according to it an osmotic substance is produced in the tubulus system so that firstly the tubulus system works as an osmotic multiplier and secondly water is extracted from the vasa recta system by the tubuli, so that the vasa recta system will work as diffusion multiplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Carrasquer, G.: Persönliche Mitteilung (1962).

  • Eigler, F. W.: Messung des aktiven Natriumtransportes in den proximalen Tubuli von Nocturus maculosus mit Hilfe der modifizierten Ussingschen Kurzschlußmethode. Pflügers Arch. ges. Physiol. 272, 41 (1960).

    Google Scholar 

  • Giebisch, G.: Kidney, water and electrolyte metabolism. Ann. Rev. Physiol. 24, 357–420 (1962).

    Google Scholar 

  • Gottschalk, C. W., and M. Mylle: Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Amer. J. Physiol. 196, 927 (1959), Review 1962.

    Google Scholar 

  • -- W. E. Lassiter and M. Mylle: Studies of the composition of vasa recta plasma in the hamster kidney. Proc. of the Intern. Union of Physiol. Scien. Vol. I/XXII Intern. Congress Leiden Lectures, Symposia I–X, Part I P 375.

  • Hargitay, B., and W. Kuhn: Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z. Elektrochem. angew. physik. Chem. 55, 539 (1951).

    Google Scholar 

  • Kuhn, H. J., P. Moser u. W. Kuhn: Haarnadelgegenstromsystem als Grundlage zur Erzeugung hoher Gasdrucke in der Schwimmblase von Tiefseefischen. Pflügers Arch. ges. Physiol. 275, 231–237 (1962).

    Google Scholar 

  • Kuhn, W.: Haarnadelgegenstromprinzip als Grundlage der Harnkonzentrierung in der Niere. Klin. Wschr. 37, 997–1003 (1959).

    Google Scholar 

  • -- u. H. J. Kuhn: Multiplikation von Aussalz und anderen Einzeleffekten für die Bereitung hoher Gasdrucke in der Schwimmblase. Z. Elektrochem. 65 (1961).

  • —, and A. Ramel: Aktiver Salztransport als möglicher (und wahrscheinlicher) Einzeleffekt bei der Harnkonzentrierung in der Niere. Helv. chim. Acta 42, 628–660 (1959).

    Google Scholar 

  • O'Dell, R., J. Schlegel and J. Cuellar: Concentrations of I131 labeled hippuran and urea in the kidney under conditions of stop flow. Proc. of the Intern. Union of Physiol. Scien. XXII Intern. Congr. Leiden Vol. II, No. 270 (1962).

  • —, and B. Schmidt-Nielsen: Concentrating ability and kidney structure. Fed. Proc. 19, 366 (1960).

    Google Scholar 

  • Schales, O., and S. S. Schales: A simple and accurate method for the determination of chloride in biological fluids. J. biol. Chem. 140, 879 (1941).

    Google Scholar 

  • Schmidt-Nielsen, B.: Movements of urea in the renal countercurrent system. Proc. of the Intern. Union of Physiol. Scien. XXII Intern. Congr. Leiden, Vol. I. Part I P, 377 (1962), Lectures and Symposia I–X.

  • — R. O'Dell and H. Osaki: Interdependence of urea and electrolytes in production of a concentrated urine. Amer. J. Physiol. 200, 1125–1132 (1961).

    Google Scholar 

  • -- K. J. Ullrich, R. O'Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter and M. Mylle: Micropuncture study of the composition of fluid from cortical nephrons in the rat kidney. Excerpta Med. Intern. Congr. Series 29/72 (1961).

  • Scholander, P. F.: Secretion of gases against high pressures in the swimbladder of deep sea fishes. II. The rete mirabile. Biol. Bull. 107/108, 260–277 (1954/55).

    Google Scholar 

  • Windhager, E. E., and G. Giebisch: Micropuncture study of renal tubular transfer of sodium chloride in the rat. Amer. J. Physiol. 200, 581–590 (1961).

    Google Scholar 

  • Wirz, H.: Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv. physiol. pharmacol. Acta 14, 353 (1956), 445 Review 1962.

    Google Scholar 

  • — B. Hargitay and W. Kuhn: Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. physiol. pharmacol. Acta 9, 196–207 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 5 Textabbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niesel, W., Röskenbleck, H. Möglichkeiten der Konzentrierung von Stoffen in biologischen Gegenstromsystemen. Pflügers Archiv 276, 555–567 (1963). https://doi.org/10.1007/BF00363561

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363561

Navigation