Skip to main content
Log in

Genes required for embryonic muscle development in Drosophila melanogaster A survey of the X chromosome

  • Original Articles
  • Published:
Roux's archives of developmental biology Aims and scope Submit manuscript

Abstract

We have begun a genetic analysis to dissect the process of myogenesis by surveying the X chromosome of Drosophila melanogaster for mutations that affect embryonic muscle development. Using polarised light microscopy and antibody staining techniques we analysed embryos hemizygous for a series of 67 deletion mutations that together cover an estimated 85% of the X chromosome, or 16.5% of the genome. Whereas the mature wild type embryo has a regular array of contractile muscles that insert into the epidermis, 31 of the deletion mutants have defects in muscle pattern, contractility or both, that cannot be attributed simply to epidermal defects and identify functions required for wild type muscle development. We have defined mutant pattern phenotypes that can be described in terms of muscle absences, incomplete myoblast fusion, failure of attachment of the muscle to the epidermis or mispositioning of attachment sites. Thus muscle development can be mutationally disrupted in characteristic and interpretable ways. The areas of overlap of the 31 deletions define 19 regions of the X chromosome that include genes whose products are essential for various aspects of myogenesis. We conclude that our screen can usefully identify loci coding for gene products essential in muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashburner M (1989) Drosophila: a laboratory manual. Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Barbas JA, Galceran J, Krah-Jentgens I, Luis de la Pompa J, Canal I, Pongs O, Ferrùs A (1991) Troponin I is encoded in the haplolethal region of the Shaker gene complex of Drosophila. Genes Dev 5:132–140

    Google Scholar 

  • Bate M (1990) The embryonic development of larval muscles in Drosophila. Development 110:791–804

    Google Scholar 

  • Beall CJ, Fyrberg E (1991) Muscle abnormalities in Drosophila melanogaster heldup mutants are caused by missing or aberrant Troponin-I isoforms. J Cell Biol 114:941–951

    Google Scholar 

  • Bogaert T, Brown N, Wilcox M (1987) The Drosophila PS2 antigen is an invertebrate integrin that, like the fibronectin receptor, becomes localized to muscle attachments. Cell 51:929–940

    Google Scholar 

  • Broadie K, Bate M (1993) Development of the embryonic neuromuscular synapse in Drosophila melanogaster. J Neurosci 13:144–166

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Campos-Ortega JA, Jiménez F (1980) The effect of X-chromosome deficencies on neurogenesis in Drosophila. In: Siddiqi O, Babu P, Hall LM, Hall JC (eds) Development and neurobiology of Drosophila. Plenum Press, New York, pp 201–222

    Google Scholar 

  • Corbin V, Michelson AM, Abmayr SM, Neel V, Alcamo E, Maniatis T, Young MW (1991) A role for the Drosophila neurogenic genes in mesoderm differentiation. Cell 67:311–323

    Google Scholar 

  • Crossley AC (1978) The morphology and development of the Drosophila muscular system. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila 2b. Academic Press, London New York San Francisco, pp 499–560

    Google Scholar 

  • Deak II, Bellamy PR, Bienz M, Dubuis Y, Fenner E, Gollin M, Rähmi A, Ramp T, Reinhardt CA, Cotton B (1982) Mutations affecting the indirect flight muscles of Drosophila melanogaster. J Embryol Exp Morphol 69:61–81

    Google Scholar 

  • Drysdale R, Warmke J, Kreber R, Ganetzy B (1991) Molecular characterization of eag: a gene affecting potassium channels in Drosophila melanogaster. Genetics 127:497–505

    Google Scholar 

  • Eberl DF, Hillaker AJ (1988) Characterization of X-linked recessive lethal mutations affecting embryonic morphogenesis in Drosophila melanogaster. Genetics 118:109–120

    Google Scholar 

  • Emerson CP, Beckner SK (1975) Activation of myosin in fusing and mononucleated myoblasts. J Mol Biol 93:431–447

    Google Scholar 

  • Falk DR, Roselli L, Curtiss S, Halladay D, Klufas C (1984) The characterisation of chromosome breaks in Drosophila melanogaster I. Mass isolation of deficiencies which have an endpoint in the 14A–15A region. Mutat Res 126:25–34

    Google Scholar 

  • Fyrberg E (1989) Study of contractile and cytoskeletal proteins using Drosophila genetics. Cell Motil Cytoskelet 14:118–127

    Google Scholar 

  • Fyrberg E, Fyrberg CC, Beall C, Saville DL (1990) Drosophila melanogaster Toponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J Mol Biol 216:657–675

    Google Scholar 

  • Gergen P, Wieschaus E (1986) Dosage requirements for runt in the segmentation of Drosophila embryos. Cell 45:289–299

    Google Scholar 

  • Hess N, Kronert WA, Bernstein SI (1989) Transcriptional and post-transcriptional regulation of Drosophila myosin heavy chain gene expression. In: Cellular and molecular biology of muscle development. A R Liss, Inc New York, pp 621–631

    Google Scholar 

  • Homyk T, Sheppard DF (1977) Behavioral mutants of Drosophila melanogaster I. Isolation and mapping of mutations which decrease flight ability. Genetics 87:95–104

    Google Scholar 

  • Homyk T, Szidonya J, Suzuki DT (1980) Behavioral mutants of Drosophila melanogaster III. Isolation and mapping of mutations by direct visual observation of behavioural phenotypes. Mol Gen Genet 177:553–565

    Google Scholar 

  • Hooper J (1986) Homeotic gene function in muscles of Drosophila larvae. EMBO J 5:2321–2329

    Google Scholar 

  • Jan YN, Bodmer R, Jan LY, Ghysen A, Dambly-Chaudière C (1987) Mutations affecting the embryonic development of the peripheral nervous system in Drosophila. In: Molecular entomology, A R Liss, Inc, New York, pp 45–56

    Google Scholar 

  • Jürgens G, Wieschaus E, Nusslein-Volhard C (1984) Mutations affecting the pattern of larval cuticle in Drosophila II. Zygotic loci on the third chromosome. Roux's Arch Dev Biol 193:283–295

    Google Scholar 

  • Koana T, Hotta Y (1978) Isolation and characterisation of flightless mutants in Drosophila melanogaster. J Embryol Exp Morphol 45:123–143

    Google Scholar 

  • Leptin M, Bogaert T, Lehman R, Wilcox M (1989) The function of PS integrins during Drosophila embryogenesis. Cell 56:401–408

    Google Scholar 

  • Lindsley DL, Zimm GG (1992) The genome of Drosophila melanogaster. Academic Press Inc, New York

    Google Scholar 

  • MacKrell AJ, Blumberg B, Hynes R, Fessler JH (1988) The lethal myospheroid gene of Drosophila encodes a membrane protein homologous to vertebrate integrin β subunits. Proc Natl Acad Sci USA 85:2633–2638

    Google Scholar 

  • Moss PS, Strohman RC (1976) Myosin synthesis by fusion arrested chick embryo myoblasts in cell culture. Dev Biol 48:431–437

    Google Scholar 

  • Newman SM, Wright TRF (1983) Lethal(1)fibrillardysgenesis (l(1)fdg), a mutation affecting muscle development in the embryo of Drosophila melanogaster. Dev Genetics 3:329–345

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity. Nature 287:795–801

    Google Scholar 

  • Nüsslein-Volhard C, Wieschaus E, Kluding M (1984) Mutations affecting the pattern of larval cuticle in Drosophila I. Zygotic loci on the second chromosome. Roux's Arch Dev Biol 193:267–282

    Google Scholar 

  • Perrimon N, Engstrom L, Mahowald AP (1984) Developmental genetics of the 2E-F region of the Drosophila X-chromosome: A region rich in “developmentally important” genes. Genetics 108:559–572

    Google Scholar 

  • Poulson DF (1940) The effects of certain X-chromosome deficiencies on the embryonic development of Drosophila melanogaster. J Exp Zool 83:271–325

    Google Scholar 

  • Poulson DF (1945) Chromosomal control of embryogenesis in Drosophila. Am Naturalist 79:340–363

    Google Scholar 

  • Stephenson EC, Mahowald AP (1987) Isolation of Drosophila clones encoding maternally restricted RNAs. Dev Biol 124:1–8

    Google Scholar 

  • Trotter JA, Nameroff M (1976) Myoblast differentiation in vitro: morphological differentiation of mononucleated myoblasts. Dev Biol 49:548–555

    Google Scholar 

  • Vertel BM, Fischman DA (1976) Myosin accumulation in mononucleated cells of chick muscle cultures. Dev Biol 48:438–446

    Google Scholar 

  • Wieschaus E, Nusslein-Volhard C, Jürgens G (1984) Mutations affecting the pattern of larval cuticle in Drosophila I. Zygotic loci on the X chromosome and fourth chromosome. Roux's Arch Dev Biol 193:296–307

    Google Scholar 

  • Wieschaus E, Nüsslein-Volhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila: a practical approach. IRL Press, Oxford, pp 199–227

    Google Scholar 

  • Wilcox M, DiAntonio A, Leptin M (1989) The function of PS integrins in Drosophila wing morphogenesis. Development 107:891–897

    Google Scholar 

  • Wright TFR (1960) The phenogenetics of the embryonic mutant lethal myospheroid in Drosophila melanogaster. J Exp Zool 143:77–99

    Google Scholar 

  • Zhang K, Smouse D, Perrimon P (1991) The crooked neck gene of Drosophila contains a motif found in a family of yeast cell cycle genes. Genes Dev 5:1080–1091

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drysdale, R., Rushton, E. & Bate, M. Genes required for embryonic muscle development in Drosophila melanogaster A survey of the X chromosome. Roux's Arch Dev Biol 202, 276–295 (1993). https://doi.org/10.1007/BF00363217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363217

Key words

Navigation