Elektrophysiologische Studien zur Aufhebung der Kaliumlähmung des Froschmyokards durch ATP

  • H. Kotowski
  • H. Antoni
  • A. Fleckenstein


The electrical and mechanical activity of an isolated frog's ventricle in Ringer solution paralyzed by rising the extracellular potassium concentration to 12.8 mM can be restored by addition of ATP as shown in earlier experiments.

Further information about the mechanism of action of ATP could be obtained by an analysis of the bioelectrical phenomena with intracellular electrodes and by isometrical tension measurements. In the high potassium Ringer solution the resting potential of the myocardial fibres was found to be reduced from the normal value of 69 (± 0.6) mV to a lower average amounting to 40 (± 0.5) mV. ATP on the other hand, when added to the paralyzing medium, led to a partial recovery of the membrane potential so that an average of 49 (± 0.6) mV was found. Furthermore the conductivity and the conduction velocity of the myocardial fibres could be restored. Simultaneously the shape of the action potential, which was heavily affected by high potassium, returned towards normal under the influence of ATP. This effect of ATP became particularly obvious in reestablishing the prolonged duration of the myocardial action potential (plateau). In general the membrane potential and the bioelectrical activity of the fibres did not return completely to the initial state. Nevertheless the recovery of the mechanical tension often exceeded the normal values found in usual Ringer solution. This observation may be indicative for another action of ATP on the electromechanical coupling at the membrane.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631–658 (1956).Google Scholar
  2. Antoni, H., u. H. Kotowski: Über den Einfluß der Temperatur auf die Repolarisation des Frosch-Myokards nach Kalium-Depolarisation. Pflügers Arch. ges. Physiol. 270, 24 (1959).Google Scholar
  3. Carmeliet, E., u. L. Laquet: Durée du potentiel d'action ventriculaire de grenouille en fonction de la fréquence. Influence des variations ioniques du potassium et sodium. Arch. int. Physiol. 66, 1–21 (1958).Google Scholar
  4. Coraboeuf, E., u. S. Weidmann: Temperature effects on the electrical activity of Purkinje fibres. Helv. physiol. pharmacol. Acta 12, 32–41 (1954).Google Scholar
  5. Draper, M. H., and S. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol (Lond.) 115, 74–94 (1951).Google Scholar
  6. Dudel, J., u. W. Trautwein: Die Wirkung von Adenosintriphosphat (ATP) auf das Membranpotential der Myokardfaser. Pflügers Arch. ges. Physiol. 267, 200–205 (1958).Google Scholar
  7. Fleckenstein, A., H. Hochrein u. H. Kotowski: Aufhebung der Kaliumlähmung des isolierten Froschherzens durch Adenosintriphosphat. Pflügers Arch. ges. Physiol. 265, 485–487 (1958).Google Scholar
  8. Hoffman, B. F., and E. E. Suckling: Microelectrode studies of repolarisation in the dog ventricle. Abstr. 19th internat. physiol. Congr. pp. 470–471 (1953).Google Scholar
  9. Kopf, R.: Über die Veränderungen des mono- und diphasischen Aktions-Stroms des Kaltblüterherzens unter Kalium-Ionen-Einwirkung. Pflügers Arch. ges. Physiol. 249, 513–520 (1947).Google Scholar
  10. Kotowski, H., u. H. Antoni: Die Wirkung von Kalium und ATP auf Ruhe- und Aktionspotential des Froschmyokards. Pflügers Arch. ges. Physiol. 268, 58 (1958).Google Scholar
  11. Nastuk, W. L.: The electrical activity of the muscle cell membrane at the neuromuscular junction. J. cell. comp. Physiol. 42, 249–272 (1953).Google Scholar
  12. Niedergerke, R.: The “staircase” phenomenon and the action of calcium on the heart. J. Physiol. (Lond.) 134, 569–583 (1956).Google Scholar
  13. The potassium chloride contracture of the heart and its modification by calcium. J. Physiol. (Lond.) 134, 584–599 (1956).Google Scholar
  14. Schütz, E.: Elektrophysiologie des Herzens bei einphasischer Ableitung. Ergebn. Physiol. 38, 493–620 (1936).Google Scholar
  15. Trautwein, W., U. Gottstein u. J. Dudel: Der Aktionsstrom der Myokardfaser im Sauerstoffmangel. Pflügers Arch. ges. Physiol. 260, 40–60 (1954).Google Scholar
  16. Trautwein, W., u. K. Zink: Über Membran- und Aktionspotentiale einzelner Myokardfasern des Kalt- und Warmblüterherzens. Pflügers Arch. ges. Physiol. 256, 68–84 (1952).Google Scholar
  17. Waerden, B. L. van der, u. E. Nievergelt: Tafeln zum Vergleich zweier Stichproben mittels X-Test und Zeichentest. Berlin, Göttingen, Heidelberg: Springer 1956.Google Scholar
  18. Weidmann, S.: The electrical constants of Purkinje fibers. J. Physiol. (Lond.) 118, 348–360 (1952).Google Scholar
  19. The effect of the cardiac membrane potential on the rapid availability of the sodium carrying system. J. Physiol. (Lond.) 127, 213–224 (1955).Google Scholar
  20. Elektrophysiologie der Herzmuskelfaser. Bern und Stuttgart: H. Huber 1956.Google Scholar
  21. Woodbury, J. W., and A. J. Brady: Intracellular recording from moving tissues with a flexible mounted ultramicroelectrode. Science 123, 100–101 (1956).Google Scholar
  22. Woodbury, L. A., H. H. Hecht and A. R. Christopherson: Membrane resting and action potentials of single cardiac muscle fibers of the frog ventricle. Amer. J. Physiol. 164, 307–318 (1951).Google Scholar
  23. Woodbury, L. A., J. W. Woodbury and H. H. Hecht: Membrane resting and action potentials from single cardiac muscle fibers. Circulation 1, 264–266 (1950).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • H. Kotowski
    • 1
  • H. Antoni
    • 1
  • A. Fleckenstein
    • 1
  1. 1.Aus dem Physiologischen Institut der Universität Freiburg i. Br.Germany

Personalised recommendations