Skip to main content
Log in

Zusammenfassung

An verkürzten Purkinjefäden wurden bei geregelterSpannung Strom-Spannungs-Beziehungen gemessen. Dabei wurde die Membran mit jeweils konstanter Geschwindigkeit von 0,3–30 V/s de- und repolarisiert. Der kapazitive Strom, der während einer solchen Spannungsänderung floß, verhielt sich wie der Strom durch ein Netzwerk, in dem eine direkt gekoppelte Membrankapazität C M (4 μF/cm2) einer größeren über einen Serienwiderstand C M (150 Ω cm2) angeschlossenen Kapazität C M (8 μF/cm2) parallel liegt.

Wenn die Membran mit Geschwindigkeiten über 1 V/s depolarisiert wurde, floß zwischen −50 und 0 mV ein Natriumstrom. Das Fehlen von Natriumstrom bei positiven Membranpotentialen könnte bei den besprochenen Depolarisationsgeschwindigkeiten auf zeitliche Inaktivierung zurückgeführt werden. Die Amplitude dieses Natriumstroms wuchs mit steigender Depolarisationsgeschwindigkeit stark an. Wurde die extracelluläre Na+-Konzentration zwischen 0 und 145 mM/l variiert, so flossen die Natriumionen oberhalb des entsprechenden Na+-Gleichgewichtspotentials aus der Faser, und unter diesem Potential in die Faser. Die Abhängigkeit der Na+-Permeabilität vom Membranpotential wurde von der extracellulären Na+-Konzentration nicht beeinflußt. Die bei einer Depolarisationsgeschwindigkeit von 30 V/s gemessene maximale Na+-Permeabilität lag bei 0,5 · 10−3 cm/s.

Zusätzlich zum erregenden negativen Na+-Strom in Tyrode-Lösung wurde ein negativer „Nicht-Natrium-Strom“ beobachtet, der von der Anwesenheit extracellulärer Na+-Ionen unabhängig war. Der negative „Nicht-Natrium-Strom“ hing in ähnlicher Weise wie der Na+-Strom vom Membranpotential ab. Die Ladungsträger für diesen Strom sind nicht bekannt.

Summary

In short Purkinje fibers current voltage relations were measured by a voltage clamp technique. The membrane was de- and repolarized at constant speeds of 0.3–30 V/s. The capacitive current flowing during such potential changes could be simulated by the current through a network, in which about two thirds of the total membrane capacity of 12 μF/cm2 were connected through a series resistor of 150 Ω cm2.

When the membrane was depolarized with speeds above 1 V/s, sodium current was measured between about − 50 to 0 mV. Absence of sodium current at positive membrane potentials could result from temporal inactivation. The amplitude of the sodium current increased greatly with rising speed of depolarization. When the external Na+ concentration was varied between 0 and 145 mM/l, the direction of the sodium current was outward above, and inward below the respective sodium equilibrium potentials. The dependence of sodium permeability on membrane potential was not influenced by the external sodium concentration. The maximum Na+ permeabilities measured at a speed of depolarization of 30 V/s were in the range of 0.5 · 10−3 cm/s.

In addition to the excitatory negative Na+ current seen in Tyrode's solution a negative “non-sodium current” was observed in presence and absence of external Na+. The voltage dependence of the non-sodium current was similar to that of the Na+ current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Brady, A. J., and J. W. Woodbury: The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J. Physiol. (Lond.) 154, 385–407 (1960).

    Google Scholar 

  • Carmeliet, E. E.: Chloride and potassium permeability in cardiac Purkinje fibres. Presses Académiques Européennes S.C., Bruxelles 1961.

    Google Scholar 

  • Cole, K. S., and J. W. Moore: Ionic current measurement in the squid giant axon membrane. J. gen. Physiol. 44, 123–167 (1960).

    Google Scholar 

  • Deck, K. A., R. Kern, and W. Trautwein: Voltage clamp technique in mammalian cardiac fibers. Pflügers Arch. ges. Physiol. 280, 50–62 (1964).

    Google Scholar 

  • — and W. Trautwein: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol. 280, 63–80 (1964).

    Google Scholar 

  • Délèze, J.: Perfusion of a strip of mammalian ventricle: effects of K-rich and Nadeficient solutions on transmembrane potentials. Circulat. Res. 7, 461–465 (1959).

    Google Scholar 

  • Dodge, F., and B. Frankenhaeuser: Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique. J. Physiol. (Lond.) 148, 188–200 (1959).

    Google Scholar 

  • Draper, M. H., and S. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 74–94 (1951).

    Google Scholar 

  • Dudel, J., K. Peper, and W. Trautwein: The contribution of Ca++ ions to the current voltage relation in cardiac muscle (Purkinje fibers). Pflügers Arch. ges. Physiol. 288, 262–281 (1966).

    Google Scholar 

  • -- -- R. Rüdel, and W. Trautwein: (in preparation) (1967).

  • Falk, G., and P. Fatt: Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc. roy. Soc. B 160, 69–123 (1964).

    Google Scholar 

  • Fozzard, H. A.: Membrane capacity of the cardiac Purkinje fibre. J. Physiol. (Lond.) 182, 255–267 (1966).

    Google Scholar 

  • Goldman, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol. 27, 37–60 (1943).

    Google Scholar 

  • Haas, H. G., H. G. Glitsch u. R. Kern: Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Außenkonzentration. Pflügers Arch. ges. Physiol. 288, 43–64 (1966).

    Google Scholar 

  • Hall, A. E., O. F. Hutter, and D. Noble: Current-voltage relations of Purkinje fibres in sodium-deficient solutions. J. Physiol. (Lond.) 166, 225–240 (1963).

    Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449–472 (1952a).

    Google Scholar 

  • — The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473–496 (1952b).

    Google Scholar 

  • — The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506 (1952c).

    Google Scholar 

  • — and B. Katz: Measurement of current voltage relations in the membrane of the giant-axon of Loligo. J. Physiol. (Lond.) 116, 424–448 (1952).

    Google Scholar 

  • — and B. Katz: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77 (1949).

    Google Scholar 

  • Krause, H., H. Antoni u. A. Fleckenstein: Ein elektrisches Modell für die Bildung lokaler und fortgeleiteter Erregungen an der Myokardfaser auf der Grundlage variabler Strom-Spannungs-Kennlinien für K+ und Na+. Pflügers Arch. ges. Physiol. 289, 12–36 (1966).

    Google Scholar 

  • Moore, J. M., and K. S. Cole: Voltage clamp techniques. Physical Techniques in Biological Research. Volume VI, pp. 263–321. New York and London: Academic Press 1963.

    Google Scholar 

  • Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. (Lond.) 160, 317–352 (1962).

    Google Scholar 

  • Page, E., and A. K. Solomon: Cat heart muscle in vitro. I. Cell volumes and intracellular concentrations in papillary muscle. J. gen. Physiol. 44, 327–344 (1960).

    Google Scholar 

  • Trautwein, W., J. Dudel, and K. Peper: Stationary S-shaped current voltage relation and hysteresis in heart muscle fibers. Excitatory phenomena in Na+ free bathing solutions. J. cell. comp. Physiol. 66, Suppl. 2, 79–90 (1965).

    Google Scholar 

  • Weidmann, S.: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.) 115, 227–236 (1951).

    Google Scholar 

  • — The electrical constants of Purkinje fibres. J. Physiol. (Lond.) 118, 348–360 (1952).

    Google Scholar 

  • — The effect of the cardiac membrane potential on the rapid availability of the sodium carrying system. J. Physiol. (Lond.) 127, 213–224 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by the “Deutsche Forschungsgemeinschaft”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudel, J., Peper, K., Rüdel, R. et al. Excitatory membrane current in heart muscle (Purkinje fibers). Pflügers Archiv 292, 255–273 (1966). https://doi.org/10.1007/BF00362740

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362740

Keywords

Navigation