Skip to main content
Log in

Tubular pressure gradients and filtration dynamics during urinary stop flow in the rat

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

Proximal tubular pressure during 0.9 and 5% NaCl diuresis in rats remained above ureteral pressure for periods of occlusion of the ureter for as long as an hour, indicating continuous reabsorption-replacement. With 5% mannitol diuresis, the pressures came to apparent equilibrium in 20–25 min, and with 10–20% mannitol, in ca. 13 min. Inulin injected after the initiation of stop flow with intense mannitol diuresis (15 min blockade) was localized in the nephron beyond the site of the sodium “low”, taken to be location of the early distal convoluted tubule, thus verifying continued reabsorption-replacement during the period of ureteral occlusion. When inulin was injected after 30 min of stop flow with 5% NaCl diuresis, even greater concentrations of inulin were obtained in the nephron beyond the site of the sodium low, when the ureteral blockade was released at 45 min. In this series, U/P inulin averaged 72 (in the stop flow urine), compared to 13 in the mannitol group. C IN during stop flow in the mannitol series averaged 0.16 ml/min/100 g B.W. (both kidneys), and with 5% NaCl, 0.434 ml/min/100 g B.W. The average values per g of kidney weight were 0.175 and 0.494 ml/min, respectively. These values approximate 25 and 60% of expected free flow values. A further complication of the stop flow method in the rat is that cortical blood flow declines after 10–15 min of blockade during mannitol diuresis, apparently the result of increased intrarenal pressure impairing flow in susceptible segments of the vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bank, N., and H. S. Aynedjian: A micropuncture study of the renal concentration defect of potassium depletion. Amer. J. Physiol. 206, 1347 (1964).

    Google Scholar 

  2. Berliner, R. W., T. J. Kennedy jr., and J. G. Hilton: Renal clearance of ferrocyanide. Amer. J. Physiol. 160, 325 (1950).

    Google Scholar 

  3. Deetjen, P., u. H. Brechtelsbauer: Durchblutungsmessungen an der Nierenrinde von Ratten in situ. Pflügers Arch. ges. Physiol. (in press).

  4. --, and K. Thurau: Micropuncture studies of intrarenal fluid dynamics during ureteral occlusion (“stop flow”). Excerpta Medica, International Congress Series No. 48, 2, abst. no. 256 (1962).

  5. Giebisch, G., R. M. Klose, and E. Windhager: Micropuncture study of hypertonic sodium loading in the rat. Amer. J. Physiol. 206, 687 (1964).

    Google Scholar 

  6. Gilmore, J. P.: Influence of tissue pressure on renal blood flow autoregulation. Amer. J. Physiol. 206, 707 (1964).

    Google Scholar 

  7. Gottschalk, C. W., and M. Mylle: Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Amer. J. Physiol. 185, 430 (1956).

    Google Scholar 

  8. — Micropuncture study of pressure in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Amer. J. Physiol. 189, 323 (1957).

    Google Scholar 

  9. Hilger, H. H., J. D. Klümper u. K. J. Ullrich: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol. 267, 218 (1958).

    Google Scholar 

  10. Hinshaw, L. B.: In discussion of: Renal vascular resistance during elevated ureteral pressure. Circulat. Res., Suppl. I, 15, 155 (1964).

    Google Scholar 

  11. Lassiter, W. E., M. Mylle, and C. W. Gottschalk: Net tubular movement of water and urea in saline diuresis. Amer. J. Physiol. 206, 669 (1964).

    Google Scholar 

  12. Malvin, R. L., H. Kutchai, and F. Ostermann: Decreased nephron population resulting from increased ureteral pressure. Amer. J. Physiol. 207, 835 (1964).

    Google Scholar 

  13. —, and L. P. Sullivan: Localization of nephron transport by stop flow analysis. Amer. J. Physiol. 194, 135 (1958).

    Google Scholar 

  14. —, and L. P. Sullivan: Localization and characterization of sodium transport along the renal tubule. Amer. J. Physiol. 195, 549 (1958).

    Google Scholar 

  15. Nash, F. D., and E. E. Selkurt: Effects of elevated ureteral pressure on renal blood flow. Circulat. Res., Suppl. I, 15, 142 (1964).

    Google Scholar 

  16. Omachi, A., and R. I. Macey: Intratubular fluid movement in dog kidney during stop flow. Proc. Soc. exp. Biol. (N.Y.) 101, 386 (1959).

    Google Scholar 

  17. Peters, G.: Compensatory adaptation of renal function in the unanesthetized rat. Amer. J. Physiol. 205, 1042 (1963).

    Google Scholar 

  18. Salomon, L. L., and F. L. Lanza: Glomerular filtration in the rat after ureteral ligation. Amer. J. Physiol. 202, 559 (1962).

    Google Scholar 

  19. Selkurt, E. E.: Effect of ureteral blockade on renal blood flow and urinary concentrating ability. Amer. J. Physiol. 205, 286 (1963).

    Google Scholar 

  20. —, and I. Womack: Effects of renal venous occlusion on renal hemodynamics and concentrating ability. Amer. J. Physiol. 207, 989 (1964).

    Google Scholar 

  21. Skulan, T. W., H. E. Williamson, and F. E. Shideman: Localization of renal tubular function in the rat by stop flow analysis. Fed. Proc. 18, 445 (1959).

    Google Scholar 

  22. Taylor, M. G., and E. Ullman: Glomerular filtration after obstruction of the ureter. J. Physiol. (Lond.) 157, 38 (1961).

    Google Scholar 

  23. Thurau, K., u. G. Henne: Die transmurale Druckdifferenz der Widerstandsgefäße als Parameter der Widerstandsregulation in der Niere. Pflügers Arch. ges. Physiol. 279, 156 (1964).

    Google Scholar 

  24. Tobian, L., K. Coffee, D. Ferreira, and J. Meuli: The effect of renal perfusion on the net transport of sodium out of distal tubular urine as studied with the stop flow technique. J. clin. Invest. 43, 118 (1964).

    Google Scholar 

  25. Ullman, E., and W. S. Wilde: Effects of abruptly elevating ureter pressure during mannitol diuresis. Amer. J. Physiol. 207, 1273 (1964).

    Google Scholar 

  26. Ullrich, K. J., B. Schmidt-Nielsen, R. O'Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter, and M. Mylle: Micropuncture study of proximal and distal tubular fluid in the rat kidney. Amer. J. Physiol. 204, 527 (1963).

    Google Scholar 

  27. Williamson, H. E., T. W. Skulan, and F. E. Shideman: Effects of adrenalectomy and desoxycorticosterone on stop flow patterns of sodium and potassium in the rat. J. Pharmacol. exp. Ther. 131, 49 (1961).

    Google Scholar 

  28. Winton, F. R.: Physical factors involved in the activities of the mammalian kidney. Physiol. Rev. 17, 408 (1937).

    Google Scholar 

  29. Wirz, H.: Druckmessungen in Kapillaren und Tubuli der Niere. Helv. physiol. pharmacol. Acta 13, 42 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures in the Text

Supported by a grant from the „Deutsche Forschungsgemeinschaft“.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selkurt, E.E., Deetjen, P. & Brechtelsbauer, H. Tubular pressure gradients and filtration dynamics during urinary stop flow in the rat. Pflügers Archiv 286, 19–35 (1965). https://doi.org/10.1007/BF00362678

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362678

Keywords

Navigation