Skip to main content
Log in

A cyclin protein modulates mitosis in the budding yeast Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

For the budding yeast Saccharomyces cerevisiae the mitotic cell cycle is coordinated with cell mass at the regulatory step “start”. The threshold amount of cell mass (reflected as a “critical size”) necessary for “start” is proportional to nutrient quality. This relationship leads to a transient accumulation of cells at “start”, termed nutrient modulation, upon enrichment of nutrient conditions. Nutrient enrichment abruptly increases the critical size needed for “start”, causing the smaller cells, produced in the previous cell cycle, to be delayed at “start” while growing larger. Here we show that, in S. cerevisiae, a second cell-cycle step, at mitosis, also exhibits nutrient modulation, and is, therefore, another point of cell-cycle regulation. At both mitosis and “start”, nutrient modulation was found through mutation to be regulated by the activity of the cyclin-related WHI1 (CLN3) gene product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baroni MD, Martegani E, Monti P, Alberghina L (1989) Mol Cell Biol 9:2715–2723

    Google Scholar 

  • Booher R, Beach D (1987) EMBO J 6:3441–3447

    Google Scholar 

  • Booher R, Beach D (1988) EMBO J 7:2321–2327

    Google Scholar 

  • Byers B, Goetsch L (1974) Cold Spring Harbor Symp Quant Biol 38:123–131

    Google Scholar 

  • Byers, B, Goetch L (1975) J Bacteriol 124:511–523

    Google Scholar 

  • Cannon J, Tatchell K (1987) Mol Cell Biol 7:2653–2663

    Google Scholar 

  • Carter BLA, Lorincz A, Johnston GC (1978) J Gen Microbiol 106:222–225

    Google Scholar 

  • Carter BLA, Sudbery PE (1980) Genetics 96:561–566

    Google Scholar 

  • Courchesne WE, Kunsawa R, Thorner J (1989) Cell 58:1107–1119

    Google Scholar 

  • Cross FR (1988) Mol Cell Biol 8:4675–4684

    Google Scholar 

  • Dunphy WG, Newport JW (1988) Cell 55:925–928

    Google Scholar 

  • Fantes P, Nurse P (1977) Exp Cell Res 107:377–386

    Google Scholar 

  • Goebl M, Byers B (1988) Cell 54:739–740

    Google Scholar 

  • Hadwiger JA, Wittenberg C, Richardson HE, de Barros Lopes M, Reed SI (1989) Proc Natl Acad Sci USA 86:6255–6259

    Google Scholar 

  • Hagan I, Hayles J, Nurse P (1988) J Cell Sci 91:587–595

    Google Scholar 

  • Hartwell LH (1970) J Bacteriol 104:1280–1285

    Google Scholar 

  • Hartwell LH (1974) Bacteriol Rev 38:164–198

    Google Scholar 

  • Hartwell LH, Unger MW (1977) J Cell Biol 75:422–435

    Google Scholar 

  • Hartwell LH, Culotti J, Pringle JR, Reid BJ (1974) Science 183: 46–51

    Google Scholar 

  • Hunt T (1989) Curr Opin Cell Biol 1:268–274

    Google Scholar 

  • Jagadish MN, Carter BLA (1977) Nature 269:145–147

    Google Scholar 

  • Johnston GC, Singer RA (1978) Cell 14:951–958

    Google Scholar 

  • Johnston GC, Pringle JR, Hartwell LH (1977a) Exp Cell Res 105:79–98

    Google Scholar 

  • Johnston GC, Singer RA, McFarlane ES (1977b) J Bacteriol 132:723–730

    Google Scholar 

  • Johnston GC, Ehrhardt CW, Lorincz A, Carter BLA (1979) J Bacteriol 137:1–5

    Google Scholar 

  • Johnston GC, Singer RA, Sharrow SO, Slater ML (1980) J Gen Microbiol 118:479–484

    Google Scholar 

  • Lewin B (1990) Cell 61:743–752

    Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983) Exp Cell Res 146:151–161

    Google Scholar 

  • Moreno S, Hayles J, Nurse P (1989) Cell 58:361–372

    Google Scholar 

  • Murray LE, Veinot-Drebot LM, Hanic-Joyce PJ, Singer RA, Johnston GC (1987) Curr Genet 11:591–594

    Google Scholar 

  • Murray AW, Solomon MJ, Kirschner MW (1989) Nature 339:280–286

    Google Scholar 

  • Nash R, Tokiwa G, Anand S, Erickson K, Futcher AB (1988) EMBO J 7:4335–4346

    Google Scholar 

  • Nasmyth K, Nurse P (1981) Mol Gen Genet 182:119–124

    Google Scholar 

  • Nasmyth K, Nurse P, Fraser RSS (1979) J Cell Sci 39:215–233

    Google Scholar 

  • Nurse P (1975) Nature 256:547–551

    Google Scholar 

  • Nurse P (1990) Nature 344:503–508

    Google Scholar 

  • Nurse P, Thuriaux P, Nasmyth K (1976) Mol Gen Genet 146:167–178

    Google Scholar 

  • Piggott JR, Rai R, Carter BLA (1982) Nature 298:391–393

    Google Scholar 

  • Pines J, Hunt T (1987) EMBO J 6:2987–2995

    Google Scholar 

  • Pringle JR, Hartwell LH (1981) The Saccharomyces cerevisiae cell cycle. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 97–142

    Google Scholar 

  • Reed SI, Hadwiger JA, Lorincz AT (1985) Proc Natl Acad Sci USA 82:4055–4059

    Google Scholar 

  • Richardson HE, Wittenberg C, Cross F, Reed SI (1989) Cell 59:1127–1133

    Google Scholar 

  • Rogers S, Wells R, Rechsteiner M (1986) Science 234:364–368

    Google Scholar 

  • Russell P, Moreno S, Reed SI (1989) Cell 57:295–303

    Google Scholar 

  • Schiestl RH, Reynolds P, Prakash S, Prakash L (1989) Mol Cell Biol 9:1882–1896

    Google Scholar 

  • Solomon M, Booher R, Kirschner M, Beach D (1988) Cell 54:738–739

    Google Scholar 

  • Sudbery PE, Goodey AR, Carter BLA (1980) Nature 288:401–404

    Google Scholar 

  • Swenson KI, Farrell KM, Ruderman JV (1986) Cell 47:861–870

    Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M (1987) Mol Cell Biol 7:1371–1377

    Google Scholar 

  • Weinert TA, Hartwell LH (1988) Science 241:317–322

    Google Scholar 

  • Wheals AE (1987) Biology of the cell cycle in yeasts. In: Rose AH, Harrison JS (eds) The Yeasts, vol. 1, 2nd edn. Academic Press, London, pp 283–390

    Google Scholar 

  • Williamson DH, Fennell DJ (1975) Methods Cell Biol 12:335–351

    Google Scholar 

  • Wittenberg C, Reed SI (1988) Cell 54:1061–1072

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Rothstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veinot-Drebot, L.M., Johnston, G.C. & Singer, R.A. A cyclin protein modulates mitosis in the budding yeast Saccharomyces cerevisiae . Curr Genet 19, 15–19 (1991). https://doi.org/10.1007/BF00362082

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362082

Key words

Navigation