Skip to main content
Log in

A gene tightly linked to CEN6 is important for growth of Saccharomyces cerevisiae

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Transcriptional analysis of the region flanking the left boundary of the centromere of chromosome VI revealed the presence of a gene immediately adjacent to CEN6. The transcription of the gene is directed toward the centromere, and nucleotide sequence analysis showed that the coding region terminates only 50 bp away from CEN6. Our results extend to chromosome VI the observation that centromere-flanking regions of S. cerevisiae are transcriptionally active. Disruption of the coding region of the gene showed that its product, whilst not essential for cell viability, is important for normal cell growth. The gene has been termed DEG1 (DEpressed Growth rate). Comparison of the deduced amino acid sequence of DEG1 with a protein sequence databank revealed homology with the enzyme tRNA pseudouridine synthase I of E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argos P (1987) J Mol Biol 193:385–396

    Google Scholar 

  • Arps PJ, Marvel CC, Rubin BC, Tolan DA, Penhoet EE, Winkler ME (1985) Nucleic Acids Res 13:5297–5315

    Google Scholar 

  • Barker DG, White JHM, Johnston LH (1985) Nucleic Acids Res 13:8323–8337

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Bloom KS, Carbon J (1982) Cell 29:305–317

    Google Scholar 

  • Butler JS, Platt T (1988) Science 242:1270–1274

    Google Scholar 

  • Chlebowicz-Sledziewska E, Sledziewski AZ (1985) Gene 39:25–31

    Google Scholar 

  • Dihanich ME, Najarian D, Clark R, Gillman EC, Martin NC, Hopper AK (1987) Mol Cell Biol 7:177–184

    Google Scholar 

  • Ellis SR, Hopper AK, Martin NC (1987) Proc Natl Acad Sci USA 84:5172–5176

    Google Scholar 

  • Favaloro J, Treisman R, Kamen R (1980) Methods Enyzmol 65:718–749

    Google Scholar 

  • Fitzgerald-Hayes M (1987) Yeast 3:187–200

    Google Scholar 

  • Hamilton R, Watanabe CK, de Boer HA (1987) Nucleic Acids Res 15:3581–3593

    Google Scholar 

  • Henikoff S (1984) Gene 8:351–359

    Google Scholar 

  • Henikoff S, Cohen EH (1984) Mol Cell Biol 4:1515–1520

    Google Scholar 

  • Hieter P, Pridmore D, Hegemann J, Thomas M, Davis R, Philippsen P (1985) Cell 42:913–921

    Google Scholar 

  • Hill A, Bloom K (1987) Mol Cell Biol 7:2397–2405

    Google Scholar 

  • Hinnebusch AG, Fink GR (1983) J Biol Chem 258:5238–5247

    Google Scholar 

  • Hopper AK, Furukawa AH (1982) Cell 28:543–550

    Google Scholar 

  • Ito H, Fukuda Y, Murata N, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Langford CJ, Klinz FJ, Donath C, Gallwitz D (1984) Cell 36:645–653

    Google Scholar 

  • Lo RYC, Bell JB, Roy KL (1982) Nucleic Acids Res 10:889–902

    Google Scholar 

  • Magni GE, von Borstel RC (1962) Genetics 47:1097–1108

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) In: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Mann C, Davis RW (1986) Mol Cell Biol 6:241–245

    Google Scholar 

  • Marczynski GT, Jaehning JA (1985) Nucleic Acids Res 13:8487–8506

    Google Scholar 

  • Marvel CC, Arps PJ, Rubin BC, Kammen HO, Penhoet EE, Winkler ME (1985) J Bacteriol 161:60–71

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1966) Genetics 53:165–173

    Google Scholar 

  • Mullenbach GT, Kammen HO, Penhoet EE (1976) J Biol Chem 251:4570–4578

    Google Scholar 

  • Murray JAH, Cesareni G (1986) EMBO J 5:3391–3399

    Google Scholar 

  • Osborne BI, Guarente L (1989) Proc Natl Acad Sci USA 86:4097–4101

    Google Scholar 

  • Panzeri L, Philippsen P (1982) EMBO J 1:1605–1611

    Google Scholar 

  • Panzeri L, Groth-Clausen I, Sheperd J, Stotz A, Philippsen P (1984) Chromosomes Today 8:46–58

    Google Scholar 

  • Panzeri L, Landonio L, Stotz A, Philippsen P (1985) EMBO J 4:1867–1874

    Google Scholar 

  • Proudfoot NJ, Brownlee GG (1976) Nature 263:211–214

    Google Scholar 

  • Rothstein RJ (1983) Methods Enzymol 101:202–211

    Google Scholar 

  • Russo P, Sherman F (1989) Proc Natl Acad Sci USA 86:8348–8352

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Saunders M, Fitzgerald-Hayes M, Bloom K (1988) Proc Natl Acad Sci USA 85:175–179

    Google Scholar 

  • Sentenac A, Hall BD (1982) In: Strathern JN, Jones EW, Broach JR (eds) The Molecular Biology of the Yeast Saccharomyces, vol 2. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 561–606

    Google Scholar 

  • Sharp PM, Tuohy TMF, Mosurski KR (1986) Nucleic Acids Res 14:5125–5143

    Google Scholar 

  • Snyder M, Sapolsky RJ, Davis RW (1988) Mol Cell Biol 8:2184–2194

    Google Scholar 

  • Thill G, Kramer R, Turner K, Bostian KA (1983) Mol Cell Biol 3:570–579

    Google Scholar 

  • Tschumper G, Carbon J (1980) Gene 10:157–166

    Google Scholar 

  • Yeh E, Carbon J, Bloom K (1986) Mol Cell Biol 6:158–167

    Google Scholar 

  • Zaret KS, Sherman F (1982) Cell 28:563–573

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Simchen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostoni Carbone, M.L., Solinas, M., Sora, S. et al. A gene tightly linked to CEN6 is important for growth of Saccharomyces cerevisiae . Curr Genet 19, 1–8 (1991). https://doi.org/10.1007/BF00362080

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362080

Key words

Navigation