Skip to main content
Log in

Characterization of a porcine glucosephosphate isomerase-processed pseudogene at Chromosome 1q1.6-1.7

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A porcine glucosephosphate isomeraseprocessed pseudogene has been isolated and sequenced. The pseudogene has several base substitutions as well as an insertion and deletions, and is 83% homologous to the corresponding cDNA. It contains an intervening sequence of 565 bp, is truncated at the 3′ end, and is flanked by direct repeats of seven nucleotides. Fluorescent in situ hybridization to porcine metaphase chromosomes localized the processed pseudogene to Chromosome (Chr) 1q1.6-1.7. A (GT)14(AT)15 microsatellite was detected close to the processed pseudogene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breathnach, R., Benoist, C., O'Hare, K., Gannon, F., Chambon, P. (1978). Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc. Natl. Acad. Sci. USA 75, 4853–4857.

    Google Scholar 

  • Chaput, M., Claes, V., Portetelle, D., Cludts, I., Cravador, A., Burny, A., Gras, H., Tartar, A. (1988). The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Nature 332, 454–455.

    Google Scholar 

  • Claes, V., Taquet, A.N., Kettmann, R., Burny, A. (1990). Sequence analysis of the pig phosphoglucose isomerase gene promotor region. Biochim. Biophys. Acta 1087, 339–340.

    Google Scholar 

  • Davies, W., Harbitz, I., Hauge, J.G. (1987). A partial cDNA clone for porcine glucosephosphate isomerase: isolation, characterization and use in detection of restriction fragment length polymorphisms. Anim. Genet. 18, 233–240.

    Google Scholar 

  • Davies, W., Harbitz I., Fries, R., Stranzinger, G., Hauge, J.G. (1988). Porcine malignant hyperthermia carrier detection and chromosomal assignment using a linked probe. Anim. Genet. 19, 203–212.

    Google Scholar 

  • Devereux, J., Haeberli, P., Smithies, O. (1984). A comprehensive set of sequence analysis programs for the Vax. Nucleic Acids Res. 12, 387–395.

    Google Scholar 

  • Dyer, M.R., Gay, N.J., Walker, J.E. (1989). DNA sequence of a bovine gene and of two related pseudogenes of the proteolipid subunit of mitochondrial ATP synthase. Biochem. J. 260, 249–258.

    Google Scholar 

  • Ellegren, H., Johansson, M., Chowdhary, B.P., Marklund, S., Ruyter, D., Marklund, L., Nielsen, P.B. Edfors-Lilja, I., Gustavsson, I., Juneja, R.K., Andersson, L. (1993). Assignment of twenty porcine markers to the porcine linkage map. Genomics, in press.

  • Faik, P., Walker, J.I.H., Redmill, A.A.M., Morgan, M.J. (1988). Mouse glucose-6-phosphate isomerase and neuroleukin have identical 3′ sequences. Nature 332, 455–457.

    Google Scholar 

  • Harbitz, I., Kristensen, T., Bosnes, M., Kran, S., Davies, W. (1992). DNA sequence of the skeletal muscle calcium release channel cDNA and verification of the Arg615→Cys615 mutation, associated with porcine malignant hyperthermia, in Norwegian Landrace pigs. Anim. Genet. 23, 395–402.

    Google Scholar 

  • Kohne, D.E. (1970). Evolution of higher-organism DNA. Q. Rev. Biophys. 33, 327–375.

    Google Scholar 

  • Novacek, M.J. (1992). Mammalian phylogeny: shaking the tree. Nature 356, 121–125.

    Google Scholar 

  • Perler, F., Efstratiadis, A., Lomedico, P., Gilbert, W., Kolodner, R., Dodgson, J. (1980). The evolution of genes: the chicken preproinsulin gene. Cell 20, 555–566.

    Google Scholar 

  • Popescu, N.C., Amsbaugh S.C., Swan, D.C., Di Paolo, P.A. (1985). Induction of chromosome banding by trypsin/EDTA for gene mapping by in situ hybridization. Cytogenet. Cell Genet. 39, 73–74.

    Google Scholar 

  • Vanin, E.F. (1985). Processed pseudogenes: characteristics and evolution. Annu. Rev. Genet. 19, 253–272.

    Google Scholar 

  • Walker, J.I., Faik, P., Morgan, M.J. (1990). Characterization of the 5′ end of the gene for human glucose phosphate isomerase (GPI). Genomics 7, 638–643.

    Google Scholar 

  • Weiner, A.M., Deininger, P.L., Efstratiadis, A. (1986). Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55, 631–661.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harbitz, I., Chowdhary, B.P., Kran, S. et al. Characterization of a porcine glucosephosphate isomerase-processed pseudogene at Chromosome 1q1.6-1.7. Mammalian Genome 4, 589–592 (1993). https://doi.org/10.1007/BF00361390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00361390

Keywords

Navigation