Skip to main content
Log in

Genome organization of repetitive elements in the rodent, Peromyscus leucopus

  • Original Contributions
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

To document the frequency and distribution of repetitive elements in Peromyscus leucopus, the white-footed mouse, a cosmid genomic library was examined. Two thousand thirteen randomly chosen recombinants, with an average insert size of 35 kb and representing 2.35% of the haploid genome of P. leucopus, were screened with probes representing microsatellites, tandem repeats, and transposable elements. Of the four dinucleotides, (GT)n was present in 87% of the clones, (CT)n was present in 59% of the clones, and (AT)n and (GC)n each was represented in our sample by a single clone (0.05%). (TCC)n was present in 8% of the clones. Of the tandem repeats, the 28S ribosomal probe and the (TTAGGG)n telomere probe were not represented in the library, whereas a heterochromatic fragment was present in 9% of the clones. A transposable element, mys, was estimated to occur in 4700 copies, whereas a long interspersed element (LINE) was estimated to occur in about 41,000 copies per haploid genome. LINE and mys occurred together in the same clones more frequently than expected on the basis of chance. Hybridizing the library to genomic DNA from P. leucopus, Reithrodontomys fulvescens, Mus musculus, and human produced general agreement between phylogenetic relatedness and intensity of hybridization. However, dinucleotide repeats appeared to account for a disproportionately high number of positive clones in the more distantly related taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkins, R.M., McBee, K., Baker, R.J., Porter, C.A. (1991). Chromosomal hybrid zone of Peromyscus leucopus: test of the recombinational breakdown model. J. Mammal. 72, 535–541.

    Google Scholar 

  • Baker, R.J., Wichman, H.A. (1990). Retrotransposon Mys is concentrated on the sex chromosomes: implications for copy number containment. Evolution 44, 2083–2088.

    Google Scholar 

  • Baker, R.J., Koop, B.F., Haiduk, M.W. (1983a). Resolving systematic relationships with G-bands: a study of five genera of South American cricetine rodents. Syst. Zool. 29, 239–253.

    Google Scholar 

  • Baker, R.J., Robbins, L.W., Stangl, F.B., Jr., Birney, E.C. (1983b). Chromosomal evidence for a major subdivision in Peromyscus leucopus. J. Mammal. 64, 356–359.

    Google Scholar 

  • Baker, R.J., Porter, C.A., Hanks, B.G., Bickham, J.W. (1991). Increased variation in cellular DNA content at a hybrid zone: hybrid breakdown in Peromyscus leucopus. J. Hered. 82, 27–30.

    Google Scholar 

  • Belmaaza, A., Wallenburg, J.C., Brouillette, S., Gusew, N., Chartrand, P. (1990). Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells. Nucleic Acids Res. 18, 6385–6391.

    Google Scholar 

  • Burton, F.H., Loeb, D.D., Voliva, C.F., Martin, S.L., Edgell, M.H., Hutchison, C.A. III. (1986). Conservation throughout mammalia and extensive protein encoding capacity of the highly repeated DNA L1. J. Mol. Biol. 187, 291–304.

    Google Scholar 

  • Carleton, M.D. (1980). Phylogenetic relationships in neotomineperomyscine rodents (Muroidea) and a reappraisal of the dichotomy within New World Cricetinae. Misc. Publ. Mus. Zool. Univ. Michigan 157, 1–146.

    Google Scholar 

  • Carleton, M.D. (1989). Systematics and evolution. In Advances in the Study of Peromyscus (Rodentia), G.C. Kirkland, Jr., J.N. Layne, eds. (Lubbock, Texas: Texas Tech University Press), pp. 7–141.

    Google Scholar 

  • Crampton, J.M., Davies, K.E., Knapp, T.P. (1981). The occurrence of families of repetitive sequences in a library of cloned cDNA from human lymphocytes. Nucleic Acids Res. 9, 3821–3834.

    Google Scholar 

  • Crew, M.D., Smith, G.S., Zeller, E.C., Walford, R.L. (1989). Polymorphism in the major histocompatibility complex class II genes of Peromyscus leucopus. Immunogenetics 30, 214–217.

    Google Scholar 

  • Crew, M.D., Filipowsky, M.E., Zeller, E.C., Smith, G.S., Walford, R.L. (1990). Major histocompatibility complex class I genes of Peromyscus leucopus. Immunogenetics 32, 371–379.

    Google Scholar 

  • Epplen, J.T., Ammer, H., Epplen, C., Kammerbauer, C., Mitreiter, R., Roewer, L., Schwaiger, W., Steimle, V., Zischler, H., Albert, E., Andreas, A., Beyermann, B., Meyer, W., Buitkamp, J., Nanda, I., Schmid, M., Nürnberg, P., Pena, S.D.J., Pöche, H., Sprecher, W., Schartl, M., Weising, K., Yassouridis, A. (1991). Oligonucleotide fingerprinting using simple repeat motifs: a convenient, ubiquitously applicable method to detect hypervariability for multiple purposes. In DNA Fingerprinting: Approaches and Applications, T. Burke, G. Dolf, A.J. Jeffries, and R. Wolff, eds. (Basel, Switzerland: Birkhäuser Verlag), pp. 50–69.

    Google Scholar 

  • Evans, G.A., Lewis, K., Rothenberg, B.E. (1989). High efficiency vectors for cosmid microcloning and genomic analysis. Gene 79, 9–20.

    Google Scholar 

  • Feinberg, A.P., Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6–13.

    Google Scholar 

  • Gerbi, S.A. (1985). Evolution of ribosomal DNA. In Molecular Evolutionary Genetics, R.J. MacIntyre, ed. (Plenum Publishing Corp.), pp. 419–517.

  • Hamada, H., Petrino, M.G., Kakunaga, T. (1982). A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79, 6465–6469.

    Google Scholar 

  • Hamilton, M.J., Hong, G., Wichman, H.A. (1992). Intragenomic movement and concerted evolution of satellite DNA in Peromyscus: evidence from in situ hybridization. Cytogenet. Cell Genet. 60, 40–44.

    Google Scholar 

  • Kass, D.H., Berger, F.G., Dawson, W.D. (1992). The evolution of coexisting highly divergent Line-1 subfamilies within the rodent genus Peromyscus. J. Mol. Evol. 35, 472–485.

    Google Scholar 

  • Kirkland, G.L., Jr., Layne, J.N. (eds.) (1989). Advances in the Study of Peromyscus (Rodentia). (Lubbock, Texas: Texas Tech University Press).

    Google Scholar 

  • Korenberg, J.R., Rykowski, M.C. (1988). Human genome organization: Alu, Lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391–400.

    Google Scholar 

  • Longmire, J.L., Lewis, A.K., Brown, N.C., Buckingham, J.M., Clark, L.M., Jones, M.D., Meincke, L.J., Meyne, J., Ratliff, R.L., Ray, F.A., Wagner, R.P., Moyzis, R.K. (1988). Isolation and molecular characterization of a highly polymorphic centromeric tandem repeat in the family Falconidae. Genomics 2, 14–24.

    Google Scholar 

  • Marks, J., Schmid, C.W., Sarich, V.M. (1989). DNA hybridization as a guide to phylogeny: relations of the Hominoidea. J. Hum. Evol. 17, 769–786.

    Google Scholar 

  • McBee, K. (1991). Chromosomal aberrations in native small mammals (Peromyscus leucopus) at a petrochemical waste disposal site. II. Inherited aberrations and fragile sites indicated by G-band analysis. Environ. Toxicol. Chem. 10, 1321–1329.

    Google Scholar 

  • McBee, K., Bickham, J.W., Brown, K.W., Donnelly, K.C. (1987). Chromosomal aberrations in native small mammals (Peromyscus leucopus and Sigmodon hispidus) at a petrochemical waste disposal site. I. Standard karyology. Arch. Environ. Contam. Toxicol. 16, 681–688.

    Google Scholar 

  • Meyne, J., Baker, R.J., Hobart, H.H., Hsu, T.C., Ryder, O.A., Ward, O.G., Wiley, J.E., Wurster-Hill, D.H., Yates, T.L., Moyzis, R.K. (1990). Distribution of nontelomeric sites of the (TTAGGG)n telomeric sequence in vertebrate chromosomes. Chromosome 99, 3–10.

    Google Scholar 

  • Moyzis, R.K., Buckingham, J.M., Cram, L.S., Dani, M., Deaven, L.L., Jones, M.D., Meyne, J., Ratliff, R.L., Wu, J.R. (1988). A highly conserved repetitive DNA sequence, (TTAGGG)n present at the telomeres of human chromosomes. Proc. Natl. Acad. Sci. USA 85, 6622–6626.

    Google Scholar 

  • Moyzis, R.K., Torney, D.C., Meyne, J., Buckingham, J.M., Wu, J.-R., Burks, C., Sirotkin, K.M., Goad, W.B. (1989). The distribution of interspersed repetitive DNA sequences in the human genome. Genomics 4, 273–289.

    Google Scholar 

  • Nelson, K., Baker, R.J., Honeycutt, R.L. (1985). Mitochondrial DNA and protein differentiation between hybridizing cytotypes of the white-footed mouse, Peromyscus leucopus. Evolution 41, 864–872.

    Google Scholar 

  • Pardue, M.L., Lowenhaupt, K., Rich, A., Nordheim, A. (1987). (dC-dA)n · (dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J. 6, 1781–1789.

    Google Scholar 

  • Pine, D.S., Bourekas, E.C., Potter, S.S. (1988). Mys retrotransposons in Peromyscus leucopus and transgenic Mus musculus. Nucleic Acids Res. 16, 3359–3373.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd ed. (Plainview, NY: Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Sarich, V.M., Schmid, C.W., Marks, J. (1989). DNA hybridization as a guide to phylogeny: a critical analysis. Cladistics 5, 3–32.

    Google Scholar 

  • Sibley, C.G., Ahlquist, J.E. (1990). Phylogeny and Classification of Birds. A Study in Molecular Evolution. (New Haven, Conn.: Yale Univ. Press).

    Google Scholar 

  • Singer, M.F. (1982). Highly repeated sequences in mammalian genomes. Int. Rev. Cytol. 76, 67–112.

    Google Scholar 

  • Smith, G.S., Crew, M.D., Walford, R.L. (1989). Peromyscus as a gerontologic animal: aging and the MHC. In Genetic Effects on Aging II, (D.E. Harrison, ed.). (Caldwell, N.J.: Telford Press), pp. 457–472.

    Google Scholar 

  • Stallings, R.L. (1992). CpG suppression in vertebrate genomes does not account for the rarity of (CpG) n microsatellite repeats. Genomics 17, 890–891.

    Google Scholar 

  • Stallings, R.L., Torney, D.C., Hildebrand, C.E., Longmire, J.L., Deavin, L.L., Jett, J.H., Doggett, N.A., Moyzis, R.K. (1990). Physical mapping of human chromosomes by repetitive sequence fingerprinting. Proc. Natl. Acad. Sci. USA 87, 6218–6222.

    Google Scholar 

  • Stallings, R.L., Ford, A.F., Nelson, D., Torney, D.C., Hildebrand, C.E., Moyzis, R. (1991). Evolution and distribution of (GT) n repetitive sequences in mammalian genomes. Genomics 10, 807–815.

    Google Scholar 

  • Stangl, F.B., Jr. (1986). Aspects of a contact zone between two chromosomal races of Peromyscus leucopus (Rodentia: Cricetidae). J. Mammal. 67, 465–473.

    Google Scholar 

  • Wellauer, P.K., Dawid, I.B. (1979). Isolation and sequence organization of human ribosomal DNA. J. Mol. Biol. 128, 280–303.

    Google Scholar 

  • Wichman, H.A., Potter, S.S., Pine, D.S. (1985). Mys, a family of mammalian transposable elements isolated by phylogenetic screening. Nature 317, 77–81.

    Google Scholar 

  • Wichman, H.A., Payne, C.T., Reeder, T.W. (1990). Intragenomic variation in repetitive sequences isolated by phylogenetic screening of mammalian genomes. In Molecular Evolution, M.T. Clegg and S.J. O'Brien, eds., (New York: Alan R. Liss), pp. 153–160.

    Google Scholar 

  • Wichman, H.A., Van Den Bussche, R.A., Hamilton, M.J., Baker, R.J. (1992). Transposable elements and the evolution of genome organization in mammals. Genetica 86, 287–293.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janecek, L.L., Longmire, J.L., Wichman, H.A. et al. Genome organization of repetitive elements in the rodent, Peromyscus leucopus . Mammalian Genome 4, 374–381 (1993). https://doi.org/10.1007/BF00360588

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00360588

Keywords

Navigation