, Volume 103, Issue 9, pp 642–652 | Cite as

A comparative study of karyotypes of muntjacs by chromosome painting

  • F. Yang
  • N. P. Carter
  • L. Shi
  • M. A. Ferguson-Smith


We have used a combination of chromosome sorting, degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), chromosome painting and digital image capturing and processing techniques for comparative chromosome analysis of members of the genus Muntiacus. Chromosome-specific “paints” from a female Indian muntjac were hybridised to the metaphase chromosomes of the Gongshan, Black, and Chinese muntjac by both single and three colour chromosome painting. Karyotypes and idiograms for the Indian, Gongshan, Black and Chinese muntjac were constructed, based on enhanced 4′, 6-diamidino-2-phenylindole (DAPI) banding patterns. The hybridisation signal for each paint was assigned to specific bands or chromosomes for all of the above muntjac species. The interspecific chromosomal homology was demonstrated by the use of both enhanced DAPI banding and comparative chromosome painting. These results provide direct molecular cytogenetic evidence for the tandem fusion theory of the chromosome evolution of muntjac species.


DAPI Hybridisation Signal Chromosomal Homology Metaphase Chromosome Specific Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brinkley BR, Valdivia MM, Tousson A, Brenner SL (1984) Compound kinetochores of the Indian muntjac. Evolution by linear fusion of unit kinetochores. Chromosoma 91:1–111Google Scholar
  2. Carrano AV, Gray JW, Moore II DH, Minkler JL, Mayall BH, Van Dilla MA, Mendelsohn ML (1976) Purification of the chromosomes of the Indian muntjac by flow sorting. J Histochem Cytochem 24:348–354Google Scholar
  3. Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX males using bivariate flow karyotype analysis and flow sorted dot blots. Cytometry 11:202–207Google Scholar
  4. Carter NP, Ferguson-Smith MA, Perryman MT, Telenius H, Pelmear AH, Leversha MA, Glancy MT, Wood SL, Cook K, Dyson HM, Ferguson-Smith ME, Willatt LR (1992) Reverse chromosome painting: a method for the rapid analysis of aberrant chromosomes in clinical cytogenetics. J Med Genet 29:299–307Google Scholar
  5. Cremer T, Lichter P, Boren J, Ward DC, Manulidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumour cells by in situ hybridisation using chromosome-specific library probes. Hum Genet 80:235–236Google Scholar
  6. Dauwerse JG, Wiegant J, Raap AK, Breuning MH, van Ommen GJB (1992) Multiple colors by fluorescence in situ hybridization using ratio-labelled DNA probes create a molecular karyotype. Hum Mol Genet 1:593–598Google Scholar
  7. Elder FFB, Hsu TC (1988) Tandem fusions in the evolution of mammalian chromosomes. In: Daniel A (ed) The cytogenetics of mammalian autosomal rearrangements. Alan R Liss, New York, pp 481–506Google Scholar
  8. Fontana F, Rubini M (1990) Chromosomal evolution in Cervidae. Biosystems 24:157–174Google Scholar
  9. Hsu TC, Pathak S, Chen TR (1975) The possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations. Cytogenet Cell Genet 15:41–49Google Scholar
  10. Jauch R, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci USA 89:8611–8615Google Scholar
  11. Lan H, Shi L (1994) Restriction endonuclease analysis of mitochondrial DNA of muntacs and related deer. Sci Chin [Series BJ 37:294–302Google Scholar
  12. Lee C, Sasi R, Lin CC (1993) Interstitial localization of telomeric DNA sequences in the Indian muntjac chromosomes: further evidence for tandem fusions in the karyotypic evolution of the Asian muntjacs. Cytogenet Cell Genet 63:156–159Google Scholar
  13. Levy HP, Schultz RA, Ordonez JV, Cohen MM (1991) Anti-kinetochore staining for single laser, bivariate flow sorting of Indian muntjac chromosomes. Cytometry 12:695–700Google Scholar
  14. Levy HP, Schultz RA, Ordonez JV, Cohen MM (1993) DNA content measurements and an improved idiogram for the Indian muntjac Cytometry 14:362–368Google Scholar
  15. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridisation using recombinant DNA libraries. Hum Genet 80:224–234Google Scholar
  16. Lin CC, Sasi R, Fan Y-S, Chen Z-Q (1991) New evidence for tandem chromosome fusions in the karyotypic evolution of Asian muntjacs. Chromosoma 101:19–24Google Scholar
  17. Ma K, Shi L (1988) Studies on synaptonemal complexes in spermatocytes of Chinese muntjac, Black muntjac, and Indian muntjac. Chin J Genet 15:283–292Google Scholar
  18. Ma S, Wang Y, Shi L (1990) A new species of the genus Muntiacus from Yunnan China. Zool Res 11:47–53 (in Chinese)Google Scholar
  19. Neitzel H (1987) Chromosome evolution of Cervidae: Karyotype and molecular aspects. In: Obe G, Basler A (eds) Cytogenetics-Basic and applied aspects. Springer, Berlin Heidelberg New York, pp 91–112Google Scholar
  20. Pinkel D, Landegent J, Collins C, Fuscoe J, Seagraves R, Lucas J, Gray JW (1988) Fluorescence in situ hybridisation with human chromosome specific libraries: Detection of trisomy 21 and translocations of chromosomes 4. Proc Natl Acad Sci USA 85:9138–9142Google Scholar
  21. Scherthan H, Cremer T, Arnason U, Weier H-U, Lima-de-Faria A, Fronicke L (1994) Comparative chromosome painting discloses homologous segments in distantly related mammals. Nature Genet 6:342–347Google Scholar
  22. Shi L, Ye Y, Duan X (1980) Comparative cytogenetic studies on the red muntjac, Chinese muntjac and their F1 hybrids. Cytogenet Cell Genet 26:22–27Google Scholar
  23. Shi L (1983) Sex-linked chromosome polymorphism in black muntjac Muntiacus crinifrons In: Swaminathan MS (ed) Proceedings of the fifteenth international congress of genetics, Oxford & IBH Publication, New DelhiGoogle Scholar
  24. Shi L, Ma C (1988) A new karyotype of muntjac (Muntiacus sp.) from Gongshan county in China. Zool Res 9:343–347 (in Chinese)Google Scholar
  25. Shi L, Pathak S (1981) Gametogenesis in a Indian muntjac X Chinese muntjac hybrid. Cytogenet Cell Genet 30:152–156Google Scholar
  26. Soma H, Kada H, Mtayoshi K, Susuki Y, Meckvichal C, Mahannop A, Vatanaromya B (1983) The chromosomes of Muntiacus feae. Cytogenet Cell Genet 35:156–158Google Scholar
  27. Spathas D, Ferguson-Smith MA (1993) A simplified one step procedure for enhanced detection of biotinylated probes with fluorescein conjugates. Trends Genet 9:262Google Scholar
  28. Telenius H, Pelmear A, Tunnacliffe A, Carter NP, Behmel A, Ferguson-Smith MA, Nordenskjold M, Pfragner R, Ponder B (1992) Cytogenetic analysis by chromosome painting using DOP-PCR amplified flow-sorted chromosomes. Genes Chromosomes Cancer 4:257–263Google Scholar
  29. Wienberg J, Stanyon R, Jauch A, Cremer T (1990) Molecular cytotaxonomy of primates by chromosomal in situ suppression hybridisation. Genomics 8:347–350Google Scholar
  30. Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridisation with human chromosome specific DNA libraries. Chromosoma 101:265–270Google Scholar
  31. Wurster DH, Benirschke K (1967) Chromosome studies in some deer, the springbok and the spronghorn, with notes on placentation in deer. Cytologia 32:273–285Google Scholar
  32. Wurster DH, Benirschke K (1970) Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number. Science 168:1363–1366Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • F. Yang
    • 1
  • N. P. Carter
    • 2
  • L. Shi
    • 1
  • M. A. Ferguson-Smith
    • 2
  1. 1.Laboratory of Cellular and Molecular Evolution, Kunming Institute of ZoologyThe Chinese Academy of SciencesKunming, YunnanThe People's Republic of China
  2. 2.Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations