Skip to main content
Log in

Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Results of microhardness measurements on (100) and (110) planes of flux-grown LaBO3 crystals, in the applied load range of 10–100g, are presented. The microhardness was found to decrease with increasing load in a non-linear manner. By applying Hays and Kendall's law, the materials resistance pressure and other constants of the equation could be calculated. Hardness anisotropy, showing periodic variation of H v with the maxima and minima repeating at every 15° change in orientation of the indentor, is described and discussed. H max/Hmin are estimated as 1.14 and 1.06 for (100) and (110) planes, respectively. The fracture toughness values, K c, determined from measurements of crack lengths, are estimated to be 1.6, 1.7 MN m−3/2 (for (100) planes) and 1.2, 1.5 MN m−3/2 (for (110) planes) at 90 and 100g loads, respectively. The brittleness index, B i, is estimated as 4.6, 4.0 μm−1/2 (for (100) planes) 6.0, 4.6 μm−1/2 (for (110) planes) at 90 and 100g, loads respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Buckle, Mater Rev. 4 (1959) 49.

    Google Scholar 

  2. D. J. Clinton and R. Morrell, Mater. Chem. Phys. 17 (1987) 461.

    Article  CAS  Google Scholar 

  3. W. Hayden, N. G. Moffatt and J. Wulff, ‘The Structure and Properties of Materials’, Vol. III, Mechanical Behaviour (Wiley Eastern, New York, 1968).

    Google Scholar 

  4. H. Buckie, “Progress in microindentation hardness testing” (Victor petterson Bukindustriak tiboday, Stockholm, 1945).

    Google Scholar 

  5. G. P. Upit and S. A. Varchanya, Phys. Status Solidi 17 (1966) 831.

    Article  Google Scholar 

  6. A. R. Patel, C. C. Desai, J. Phys. D. Appl. Phys. 3 (1970) 1645.

    Article  CAS  Google Scholar 

  7. C. L. Saraf, PhD thesis, Maharaja Sayajirao University of Baroda, Baroda (1971).

    Google Scholar 

  8. R. T. Shah, PhD thesis, Maharaja Sayajirao University of Baroda, Baroda (1976).

    Google Scholar 

  9. S. B. Trivedi, PhD Thesis, Maharaja Sayajirao University of Baroda, Baroda (1977).

    Google Scholar 

  10. A. R. Patel and S. K. Arora, J. Mater. Sci. 12 (1977) 124.

    Google Scholar 

  11. K. S. Raju, Pramana 8 (1977) 266.

    Article  CAS  Google Scholar 

  12. A. R. Patel and S. K. Arora, Kristall Technik. 13 (1978) 1445.

    Article  CAS  Google Scholar 

  13. M. L. Rao and V. Haribabu, J. Mater. Sci. 16 (1978) 821.

    Google Scholar 

  14. U. V. SubbaRao and V. Haribabu, Pramana 11 (1978) 149.

    Article  Google Scholar 

  15. J. R. Pandya and C. T. Achaarya, Proc. Nat. Phys. Solid State Phys. Symp. 21C (1978) 193.

    CAS  Google Scholar 

  16. K. N. Reddy, M. L. Rao and V. Haribabu, Ind. J. Pure Appl. Phys. 17 (1979) 806.

    CAS  Google Scholar 

  17. K. J. Pratap and V. Haribabu, Bull. Mater. Sci. 2 (1980) 43.

    Article  CAS  Google Scholar 

  18. U. V. SubbaRao and V. Haribabu, Ind. J. Pure. Phys. 54A (1980) 147.

    Google Scholar 

  19. D. W. Johnson Jr., E. M Vogel and B. B. Ghate, in “Proceedings of the Third International Conference on Ferrites”, ICF3, Kyoto, Japan, edited by Hiroshi Watanabe (CAP J, Sept.–Oct., 1980) p. 285.

  20. V. P. Bhatt and C. F. Desai, Bull. Mater. Sci. 4 (1982) 23.

    Article  CAS  Google Scholar 

  21. L. J. Bhagia, PhD thesis Maharaja Sayajirao University of Baroda, Baroda (1982).

    Google Scholar 

  22. K. Nihara and T. Hirai, J. Less-Common Metals Lett. 92 (1983) L 15.

    Article  Google Scholar 

  23. J. R. Pandya, L. J. Bhagia and A. J. Shah, Bull. Mater. Sci. 5 (1983) 79.

    Article  CAS  Google Scholar 

  24. S. K. Arora and N. M. Batra, personal communication (1984).

  25. J. R. Pandya and L. J. Bhagia, Ind. J. Pure Appl. Phys. 22 (1984) 439.

    Google Scholar 

  26. R. C. Shah, PhD thesis, Maharaja Sayajirao University of Baroda, Baroda (1984).

    Google Scholar 

  27. P. N. Kotru, K. K. Raina, S. K. Kachroo and B. M. Wanklyn, J. Mater. Sci. 19 (1984) 2582.

    Article  CAS  Google Scholar 

  28. B. Vengatesan, N. Kanniah and P. Ramasamy, J. Mater. Sci. Lett. 5 (1986) 987.

    Article  CAS  Google Scholar 

  29. P. N. Kotru, A. K. Razdan and B. M. Wanklyn, J. Mater. Sci. 24 (1989) 793.

    Article  CAS  Google Scholar 

  30. P. N. Kotru, Sushma Bhatt and K. K. Raina, J. Mater. Sci. Lett. 8 (1989) 587.

    Article  CAS  Google Scholar 

  31. Romesh Kumar Bishamber Nath Marwaha, PhD thesis, University Saurashtra, Rajkot (1990).

    Google Scholar 

  32. F. Kick, “Das Gesetzder, proportionalen widerstande Und Science anwendung” Felix, Leipzig (1885).

    Google Scholar 

  33. E. M. Onitsch, Mikroskopie 2 (1947) 131.

    Google Scholar 

  34. C. A. Brookes, in “Science of Hard Materials”, edited by R. K. Vishwandham, D. J. Rowoliffe and J. Gurland (Plenum, New York).

  35. C. Hays and E. G. Kendall, Metallogr. 6 (1973) 275.

    Article  CAS  Google Scholar 

  36. F. W. Daniel, C. G. Dunn, Trans. ASM 41 (1949) 419.

    Google Scholar 

  37. P. G. Partridge and E. Roberts, J. Inst. Metals 91 (1962) 159.

    Google Scholar 

  38. R. P. Burnand, PhD dissertation, Exeter University (1974).

  39. C. A. Brookes, J. B. O'Neill and B. A. W. Redfern, Proc. R. Soc. Lond. A322 (1971).

  40. O. O. Adeyvove and T. F. Page, J. Mater. Sci. 11 (1976) 981.

    Article  Google Scholar 

  41. D. Y. Watts and A. F. Willoughby J. Appl. Phys. 56 (1984) 1859.

    Article  Google Scholar 

  42. Idem, Mater. Lett. 2 (1984) 355.

    Article  CAS  Google Scholar 

  43. D. V. Gitsue M. P. Dyntu, S. A. Supostat and A. G. Cheban, Inorg. Mater. (USA) 14 (1978) 1207.

    Google Scholar 

  44. E. M. Levin, R. S. Roth and J. B. Martin, Am. Mineral. 46 (1961).

  45. R. W. G. Wyckoff, “Crystal Structures” (Wiley, New York, 1964).

    Google Scholar 

  46. V. M. Goldschmidt and H. Hauptman, Nachr. Ges. Wiss. Gottinges Math Phys. Kl. 53 (1932).

  47. P. N. Kotru and B. M. Wanklyn, J. Mater. Sci. Lett. 14 (1979) 755.

    Article  CAS  Google Scholar 

  48. B. R. Lawn, B. J. Hockey and H. Richter, J. Microsc. 173 (1983) 295.

    Article  Google Scholar 

  49. T. P. Dabbs, C. J. Fairbanks and B. R. Lawn, “Methods for assessing the structural reliability of brittle materials”, edited by Freiman and Hudson, ASTM STP 844 (American Society for Testing and Materials, Philadelphia, PA, 1984).

    Google Scholar 

  50. W. Bischof and B. Wenderoff, Arch. Eisenhuttenw. 15 (1941–42) 497.

    Google Scholar 

  51. E. B. Bergsman, “The Micro-hardness Tester” (Victor pettersons, Bokindustriaktiebolag, Stockholm, 1945).

    Google Scholar 

  52. D. R. Tate, Trans. ASM 35 (1945) 374.

    Google Scholar 

  53. N. W. Thibault and N. L. Nyguist ibid. 38 (1947) 271.

    Google Scholar 

  54. L. P. Tarosov and W. W. Thibault, ibid. 38 (1947) 331.

    Google Scholar 

  55. R. Mitsche and E. M. Onitsch, Mikroskopie 3 (1948) 257.

    Google Scholar 

  56. R. P. Campbell, Q. Henderson and M. R. Donleavy, Trans. ASM 40 (1948) 954.

    Google Scholar 

  57. W. Rostoker, J. Inst. Metals 77 (1950) 175.

    Google Scholar 

  58. A. R. G. Brown and E. Ineson, J.Iron Steel Inst. 169 (1951) 376.

    Google Scholar 

  59. E. D. Bernhardt, Z. Metallkde 33 (1951) 135.

    Google Scholar 

  60. R. Schulze, Feinwerktechnik 55 (1951) 190.

    Google Scholar 

  61. H. Buckle, Metall. Rev. 4 (1959) 13.

    Article  Google Scholar 

  62. J. D. J. Ross, PhD dissertation, University of Exeter (1984).

  63. H. O. 'Neill, J. Inst. Metals 30 (1923) 299.

    Google Scholar 

  64. L. B. Pfeil, “The effect of cold work on the structure and hardness of single iron crystals and the changes produced by subsequent annealing”, Carnegie Memoires, Iron and Steel Institute, Vol. 16 (1927) p. 153.

    CAS  Google Scholar 

  65. H. Winchell, Am. Mineral. 30 (1945) 583.

    CAS  Google Scholar 

  66. H. Buckle, Rev. Metall. 48 (1951) 957.

    Article  Google Scholar 

  67. B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc. 62 (1979) 347.

    Article  CAS  Google Scholar 

  68. R. W. Rice, in “The Science of hardness Testing and its Research application”, edited by J. J. Westbrook and H. Conrad (ASM, Metals Park, OH, 1973) p. 117.

    Google Scholar 

  69. J. Lankford, J. Mater. Sci. 12 (1977) 791.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Razdan, A.K., Kotru, P.N. et al. Load and directional effects on microhardness and estimation of toughness and brittleness for flux-grown LaBO3 crystals. JOURNAL OF MATERIALS SCIENCE 29, 3847–3856 (1994). https://doi.org/10.1007/BF00357358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357358

Keywords

Navigation