Journal of Materials Science

, Volume 29, Issue 14, pp 3678–3690 | Cite as

Ceramic joining III bonding of alumina via Cu/Nb/Cu interlayers

  • M. L. Shalz
  • B. J. Dalgleish
  • A. P. Tomsia
  • R. M. Cannon
  • A. M. Glaeser


A method of ceramic-ceramic joining that exploits a multilayer interlayer designed to form a thin, potentially transient layer of liquid phase has been used to join alumina to alumina. Microdesigned multilayer Cu/Nb interlayers were used to achieve bonding at 1150 °C. Flexure strengths of as-bonded samples ranged from 119 to 255 MPa, with an average of ≈ 181 MPa. The ability to form ‘strong’ ceramic/metal interfaces is also indicated by instances of ceramic failure. Microstructural and chemical characteristics of fracture surfaces were evaluated using SEM, EDS and microprobe. The impact of post-bonding anneals of 10 h duration at 1000 °C in gettered argon on room-temperature joint strength was assessed. High strengths (198 to 238 MPa) were obtained. The retention of strength following annealing in low oxygen partial pressure argon differs from the behaviour previously observed in Cu/Pt bonded alumina. Effects of the anneal on interfacial microstructure were determined, and an explanation for this difference in behaviour is proposed.


Alumina Microstructure Argon Fracture Surface Partial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Shalz, B. J. Dalgleish, A. P. Tomsia and A. M. Glaeser, J. Mater. Sci. 28 (1993) 1673.CrossRefGoogle Scholar
  2. 2.
    Idem, ibid, J. Mater. Sci. 28 (1993) 1673 (in press).CrossRefGoogle Scholar
  3. 3.
    W. G. Nicholas and D. A. Mortimer, Mater. Sci. Tech. 1 (1985) 657.CrossRefGoogle Scholar
  4. 4.
    A. J. Moorhead, Adv. Ceram. Mater. 2 (1987) 159.CrossRefGoogle Scholar
  5. 5.
    K. Suganuma, Y. Miyamoto and M. Koizumi, Ann. Rev. Mater. Sci. 18 (1988) 47.CrossRefGoogle Scholar
  6. 6.
    R. V. Allen and W. E. Borbidge, J. Mater. Sci. 18 (1983) 2835.CrossRefGoogle Scholar
  7. 7.
    F. P. Bailey and W. E. Borbidge, in “Surfaces and Interfaces in Ceramic and Ceramic-metal Systems”, (Materials Research, 14), edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 525.CrossRefGoogle Scholar
  8. 8.
    G. Elssner and G. Petzow, Z. Metallkde. 64 (1973) 280.Google Scholar
  9. 9.
    G. Elssner, S. Riedel and R. Pabst, Praktische Metallographie 12 (1975) 234.Google Scholar
  10. 10.
    M. Turwitt, G. Elssner and G. Petzow, J. de Physique 46 (1985) C4–123.Google Scholar
  11. 11.
    A. G. Evans, M. Rühle and M. Turwitt, ibid. 46 (1985) C4–613.Google Scholar
  12. 12.
    H. F. Fischmeister, W. Mader, B. Gibbesch and G. Elssner, in “Interfacial Structures, Properties and Design”, edited by M. H. Yoo, W. A. T. Clark and C. L. Braint (Mater. Res. Soc. Proc., 122, Pittsburgh, Pennsylvania 1988) p. 529.Google Scholar
  13. 13.
    B. Derby, in “Ceramic Microstructures 86”, edited by J. Pask and A. G. Evans (Plenum, New York, 1987) p. 319.CrossRefGoogle Scholar
  14. 14.
    B. Derby, in “Joining of Ceramics”, edited by M. Nicholas, (Chapman & Hall, London, 1990) p. 94.Google Scholar
  15. 15.
    J. Klomp, in “Science of Ceramics”, Vol. 5, edited by C. Brosset and E. Knopp (Swedish Institute for Silicate Research, Gothenburg, 1970) p. 501.Google Scholar
  16. 16.
    Yu. V. Naidich and V. S. Zhuravlev, Refractories (USSR) 15 (1974) 55.CrossRefGoogle Scholar
  17. 17.
    M. Koizumi, M. Takagi, K. Suganuma, Y. Miyamoto and T. Okamoto, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1987) p. 1033.Google Scholar
  18. 18.
    Y. Iino and N. Taguchi, J. Mater. Sci. Lett. 7 (1988) 981.CrossRefGoogle Scholar
  19. 19.
    D. S. Duvall, W. A. Owczarski and D. F. Paulonis, Welding J. 53 (1974) 203.Google Scholar
  20. 20.
    R. E. Loehman, in “Surfaces and Interfaces in Ceramic and Ceramic-metal Systems”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 701.CrossRefGoogle Scholar
  21. 21.
    R. D. Brittain, S. M. Johnson, R. H. Lamoreaux and D. J. Rowcliffe, J. Amer. Ceram. Soc. 67 (1984) 522.CrossRefGoogle Scholar
  22. 22.
    M. L. Mecartney, R. Sinclair and R. E. Loehman, J. Amer. Ceram. Soc. 68 (1985) 472.CrossRefGoogle Scholar
  23. 23.
    S. M. Johnson and D. J. Rowcliffe, ibid. 68 (1985) 468.CrossRefGoogle Scholar
  24. 24.
    S. Baik and R. Raj, ibid. 70 (1987) C105.Google Scholar
  25. 25.
    T. Iseki, K. Yamashita and H. Suzuki, ibid. 64 (1981) C-13.CrossRefGoogle Scholar
  26. 26.
    T. Iseki, K. Yamashita and H. Suzuki, Proc. Brit. Ceram. Soc. 31 (1981) 1.Google Scholar
  27. 27.
    L. Bernstein and H. Bartholomew, Trans. AIME 236 (1966) 405.Google Scholar
  28. 28.
    Y. Iino, J. Mater. Sci. Lett. 10 (1991) 104.CrossRefGoogle Scholar
  29. 29.
    M. L. Shalz, B. J. Dalgleish, A. P. Tomsia and A. M. Glaeser, Ceramic Transactions, 35 (1993) 301.Google Scholar
  30. 30.
    A. M. Glaeser, M. L. Shalz, B. J. Dalgleish and A. P. Tomsia, Ceramic Trans. 34 (1993) 341.Google Scholar
  31. 31.
    C. A. M. Mulder and J. T. Klomp, J. de Physique 46 (1985) C4–111.Google Scholar
  32. 32.
    Von W. Dawihl and E. Klingler, Ber. Deutsch. Keram. Gesell. 46 (1969) 12.Google Scholar
  33. 33.
    G. Heidt and G. Heimke, ibid. 50 (1973) 303.Google Scholar
  34. 34.
    G. Heidt and G. Heimke, J. Mater. Sci. 10 (1975) 887.CrossRefGoogle Scholar
  35. 35.
    R. M. Crispin and M. G. Nicholas, Ceram. Eng. Sci. Proc. 10 (1989) 1575.CrossRefGoogle Scholar
  36. 36.
    C. Beraud, M. Courbiere, C. Esnouf, D. Juve and D. Treheux, J. Mater. Sci. 24 (1989) 4545.CrossRefGoogle Scholar
  37. 37.
    M. Nicholas, R. R. D. Forgan and D. M. Poole, J. Mater. Sci. 3 (1968) 9.CrossRefGoogle Scholar
  38. 38.
    M. Wittmer, C. R. Boer, P. Gudmundson and J. Carlsson, J. Amer. Ceram. Soc. 65 (1982) 149.CrossRefGoogle Scholar
  39. 39.
    Y. Yoshino, ibid. 72 (1989) 1322.CrossRefGoogle Scholar
  40. 40.
    S. T. Kim and C. H. Kim, J. Mater. Sci. 27 (1992) 2061.CrossRefGoogle Scholar
  41. 41.
    S. Morozumi, M. Kikuchi and T. Nishino, ibid. 16 (1981) 2137.CrossRefGoogle Scholar
  42. 42.
    M. Florjancic, W. Mader, M. Rühle, and M. Turwitt, J. de Physique 46 (1985) C4–129.Google Scholar
  43. 43.
    M. Rühle, K. Burger and W. Mader, J. Microsc. Spectrosc. Electron. 11 (1986) 163.Google Scholar
  44. 44.
    K. Burger, W. Mader, and M. Rühle, Ultramicroscopy 22 (1987) 1.CrossRefGoogle Scholar
  45. 45.
    M. Rühle, M. Backhaus-Ricoult, K. Burger and W. Mader, in “Ceramic Microstructures 86”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1987) p. 295.CrossRefGoogle Scholar
  46. 46.
    Y. Ishida, H. Ichinose, J. Wang and T. Suga, in Proceedings of the 46th Annual Meeting of EMSA, edited by G. W. Bailey (San Francisco Press, San Francisco, 1988) p. 728.Google Scholar
  47. 47.
    B. Gibbesch, G. Elssner, W. Mader and H. Fischmeister, Ceram. Eng. Sci. Proc. 10 (1989) 1503.CrossRefGoogle Scholar
  48. 48.
    F. S. Ohuchi, J. Mater. Sci. Lett. 8 (1989) 1427.CrossRefGoogle Scholar
  49. 49.
    K. Burger and M. Rühle, Ceram. Eng. Sci. Proc. 10 (1989) 1549.CrossRefGoogle Scholar
  50. 50.
    M. Kuwabara, J. C. H. Spence and M. Rühle, J. Mater. Res. 4 (1989) 972.CrossRefGoogle Scholar
  51. 51.
    K. Burger and M. Rühle, Ultramicroscopy 29 (1989) 88.CrossRefGoogle Scholar
  52. 52.
    W. Mader and M. Rühle, Acta Metall. 37 (1989) 853.CrossRefGoogle Scholar
  53. 53.
    J. Mayer, C. P. Flynn and M. Rühle, Ultramicroscopy 33 (1990) 51.CrossRefGoogle Scholar
  54. 54.
    T. B. Massalski, ed., “Binary Alloy Phase Diagrams”, Vol. 2 (ASM International, Metals Park, Ohio, 1990) p. 1440.Google Scholar
  55. 55.
    R. P. Elliot, “Constitution of Binary Alloys, First Supplement”, (McGraw-Hill, New York, 1965) p. 253.Google Scholar
  56. 56.
    B. J. Dalgleish, M. C. Lu and A. G. Evans, Acta Metall. 36 (1988) 2029.CrossRefGoogle Scholar
  57. 57.
    H. C. Cao, M. D. Thouless and A. G. Evans, ibid. 36 (1988) 2037.CrossRefGoogle Scholar
  58. 58.
    A. M. M. Gadalla and J. White, Trans. Brit. Ceram. Soc. 63 (1964) 39.Google Scholar
  59. 59.
    R. E. Loehman and A. P. Tomsia, Amer. Ceram. Soc. Bull. 67 (1988) 375.Google Scholar
  60. 60.
    A. L. Prill, H. W. Hayden and J. H. Brophy, Trans. AIME 230 (1964) 769.Google Scholar
  61. 61.
    O. F. De Lima, M. Krehl and K. Schulze, J. Mater. Sci. 20 (1985) 2464.CrossRefGoogle Scholar
  62. 62.
    R. O. Ritchie, R. M. Cannon Jr., B. J. Dalgleish, R. H. Dauskardt, and J. McNaney, Mater. Sci. Engng, (in press).Google Scholar
  63. 63.
    D. Korn, G. Elssner, H. F. Fischmeister and M. Rühle, Acta Metall. Mater. 40 (1992) 5355.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • M. L. Shalz
    • 1
  • B. J. Dalgleish
    • 1
  • A. P. Tomsia
    • 1
  • R. M. Cannon
    • 1
  • A. M. Glaeser
    • 1
  1. 1.Center for Advanced Materials, Lawrence Berkeley Laboratory and Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations