Skip to main content
Log in

Ceramic joining III bonding of alumina via Cu/Nb/Cu interlayers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A method of ceramic-ceramic joining that exploits a multilayer interlayer designed to form a thin, potentially transient layer of liquid phase has been used to join alumina to alumina. Microdesigned multilayer Cu/Nb interlayers were used to achieve bonding at 1150 °C. Flexure strengths of as-bonded samples ranged from 119 to 255 MPa, with an average of ≈ 181 MPa. The ability to form ‘strong’ ceramic/metal interfaces is also indicated by instances of ceramic failure. Microstructural and chemical characteristics of fracture surfaces were evaluated using SEM, EDS and microprobe. The impact of post-bonding anneals of 10 h duration at 1000 °C in gettered argon on room-temperature joint strength was assessed. High strengths (198 to 238 MPa) were obtained. The retention of strength following annealing in low oxygen partial pressure argon differs from the behaviour previously observed in Cu/Pt bonded alumina. Effects of the anneal on interfacial microstructure were determined, and an explanation for this difference in behaviour is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. L. Shalz, B. J. Dalgleish, A. P. Tomsia and A. M. Glaeser, J. Mater. Sci. 28 (1993) 1673.

    Article  CAS  Google Scholar 

  2. Idem, ibid, J. Mater. Sci. 28 (1993) 1673 (in press).

    Article  CAS  Google Scholar 

  3. W. G. Nicholas and D. A. Mortimer, Mater. Sci. Tech. 1 (1985) 657.

    Article  CAS  Google Scholar 

  4. A. J. Moorhead, Adv. Ceram. Mater. 2 (1987) 159.

    Article  CAS  Google Scholar 

  5. K. Suganuma, Y. Miyamoto and M. Koizumi, Ann. Rev. Mater. Sci. 18 (1988) 47.

    Article  Google Scholar 

  6. R. V. Allen and W. E. Borbidge, J. Mater. Sci. 18 (1983) 2835.

    Article  CAS  Google Scholar 

  7. F. P. Bailey and W. E. Borbidge, in “Surfaces and Interfaces in Ceramic and Ceramic-metal Systems”, (Materials Research, 14), edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 525.

    Chapter  Google Scholar 

  8. G. Elssner and G. Petzow, Z. Metallkde. 64 (1973) 280.

    CAS  Google Scholar 

  9. G. Elssner, S. Riedel and R. Pabst, Praktische Metallographie 12 (1975) 234.

    CAS  Google Scholar 

  10. M. Turwitt, G. Elssner and G. Petzow, J. de Physique 46 (1985) C4–123.

    Google Scholar 

  11. A. G. Evans, M. Rühle and M. Turwitt, ibid. 46 (1985) C4–613.

    Google Scholar 

  12. H. F. Fischmeister, W. Mader, B. Gibbesch and G. Elssner, in “Interfacial Structures, Properties and Design”, edited by M. H. Yoo, W. A. T. Clark and C. L. Braint (Mater. Res. Soc. Proc., 122, Pittsburgh, Pennsylvania 1988) p. 529.

  13. B. Derby, in “Ceramic Microstructures 86”, edited by J. Pask and A. G. Evans (Plenum, New York, 1987) p. 319.

    Chapter  Google Scholar 

  14. B. Derby, in “Joining of Ceramics”, edited by M. Nicholas, (Chapman & Hall, London, 1990) p. 94.

    Google Scholar 

  15. J. Klomp, in “Science of Ceramics”, Vol. 5, edited by C. Brosset and E. Knopp (Swedish Institute for Silicate Research, Gothenburg, 1970) p. 501.

    Google Scholar 

  16. Yu. V. Naidich and V. S. Zhuravlev, Refractories (USSR) 15 (1974) 55.

    Article  Google Scholar 

  17. M. Koizumi, M. Takagi, K. Suganuma, Y. Miyamoto and T. Okamoto, in “High Tech Ceramics”, edited by P. Vincenzini (Elsevier Science Publishers, Amsterdam, 1987) p. 1033.

    Google Scholar 

  18. Y. Iino and N. Taguchi, J. Mater. Sci. Lett. 7 (1988) 981.

    Article  CAS  Google Scholar 

  19. D. S. Duvall, W. A. Owczarski and D. F. Paulonis, Welding J. 53 (1974) 203.

    CAS  Google Scholar 

  20. R. E. Loehman, in “Surfaces and Interfaces in Ceramic and Ceramic-metal Systems”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1981) p. 701.

    Chapter  Google Scholar 

  21. R. D. Brittain, S. M. Johnson, R. H. Lamoreaux and D. J. Rowcliffe, J. Amer. Ceram. Soc. 67 (1984) 522.

    Article  CAS  Google Scholar 

  22. M. L. Mecartney, R. Sinclair and R. E. Loehman, J. Amer. Ceram. Soc. 68 (1985) 472.

    Article  CAS  Google Scholar 

  23. S. M. Johnson and D. J. Rowcliffe, ibid. 68 (1985) 468.

    Article  CAS  Google Scholar 

  24. S. Baik and R. Raj, ibid. 70 (1987) C105.

    Google Scholar 

  25. T. Iseki, K. Yamashita and H. Suzuki, ibid. 64 (1981) C-13.

    Article  Google Scholar 

  26. T. Iseki, K. Yamashita and H. Suzuki, Proc. Brit. Ceram. Soc. 31 (1981) 1.

    CAS  Google Scholar 

  27. L. Bernstein and H. Bartholomew, Trans. AIME 236 (1966) 405.

    CAS  Google Scholar 

  28. Y. Iino, J. Mater. Sci. Lett. 10 (1991) 104.

    Article  CAS  Google Scholar 

  29. M. L. Shalz, B. J. Dalgleish, A. P. Tomsia and A. M. Glaeser, Ceramic Transactions, 35 (1993) 301.

    CAS  Google Scholar 

  30. A. M. Glaeser, M. L. Shalz, B. J. Dalgleish and A. P. Tomsia, Ceramic Trans. 34 (1993) 341.

    CAS  Google Scholar 

  31. C. A. M. Mulder and J. T. Klomp, J. de Physique 46 (1985) C4–111.

    Google Scholar 

  32. Von W. Dawihl and E. Klingler, Ber. Deutsch. Keram. Gesell. 46 (1969) 12.

    CAS  Google Scholar 

  33. G. Heidt and G. Heimke, ibid. 50 (1973) 303.

    CAS  Google Scholar 

  34. G. Heidt and G. Heimke, J. Mater. Sci. 10 (1975) 887.

    Article  CAS  Google Scholar 

  35. R. M. Crispin and M. G. Nicholas, Ceram. Eng. Sci. Proc. 10 (1989) 1575.

    Article  CAS  Google Scholar 

  36. C. Beraud, M. Courbiere, C. Esnouf, D. Juve and D. Treheux, J. Mater. Sci. 24 (1989) 4545.

    Article  CAS  Google Scholar 

  37. M. Nicholas, R. R. D. Forgan and D. M. Poole, J. Mater. Sci. 3 (1968) 9.

    Article  CAS  Google Scholar 

  38. M. Wittmer, C. R. Boer, P. Gudmundson and J. Carlsson, J. Amer. Ceram. Soc. 65 (1982) 149.

    Article  CAS  Google Scholar 

  39. Y. Yoshino, ibid. 72 (1989) 1322.

    Article  CAS  Google Scholar 

  40. S. T. Kim and C. H. Kim, J. Mater. Sci. 27 (1992) 2061.

    Article  CAS  Google Scholar 

  41. S. Morozumi, M. Kikuchi and T. Nishino, ibid. 16 (1981) 2137.

    Article  CAS  Google Scholar 

  42. M. Florjancic, W. Mader, M. Rühle, and M. Turwitt, J. de Physique 46 (1985) C4–129.

    Google Scholar 

  43. M. Rühle, K. Burger and W. Mader, J. Microsc. Spectrosc. Electron. 11 (1986) 163.

    Google Scholar 

  44. K. Burger, W. Mader, and M. Rühle, Ultramicroscopy 22 (1987) 1.

    Article  CAS  Google Scholar 

  45. M. Rühle, M. Backhaus-Ricoult, K. Burger and W. Mader, in “Ceramic Microstructures 86”, edited by J. A. Pask and A. G. Evans (Plenum, New York, 1987) p. 295.

    Chapter  Google Scholar 

  46. Y. Ishida, H. Ichinose, J. Wang and T. Suga, in Proceedings of the 46th Annual Meeting of EMSA, edited by G. W. Bailey (San Francisco Press, San Francisco, 1988) p. 728.

    Google Scholar 

  47. B. Gibbesch, G. Elssner, W. Mader and H. Fischmeister, Ceram. Eng. Sci. Proc. 10 (1989) 1503.

    Article  CAS  Google Scholar 

  48. F. S. Ohuchi, J. Mater. Sci. Lett. 8 (1989) 1427.

    Article  CAS  Google Scholar 

  49. K. Burger and M. Rühle, Ceram. Eng. Sci. Proc. 10 (1989) 1549.

    Article  CAS  Google Scholar 

  50. M. Kuwabara, J. C. H. Spence and M. Rühle, J. Mater. Res. 4 (1989) 972.

    Article  CAS  Google Scholar 

  51. K. Burger and M. Rühle, Ultramicroscopy 29 (1989) 88.

    Article  CAS  Google Scholar 

  52. W. Mader and M. Rühle, Acta Metall. 37 (1989) 853.

    Article  CAS  Google Scholar 

  53. J. Mayer, C. P. Flynn and M. Rühle, Ultramicroscopy 33 (1990) 51.

    Article  CAS  Google Scholar 

  54. T. B. Massalski, ed., “Binary Alloy Phase Diagrams”, Vol. 2 (ASM International, Metals Park, Ohio, 1990) p. 1440.

    Google Scholar 

  55. R. P. Elliot, “Constitution of Binary Alloys, First Supplement”, (McGraw-Hill, New York, 1965) p. 253.

    Google Scholar 

  56. B. J. Dalgleish, M. C. Lu and A. G. Evans, Acta Metall. 36 (1988) 2029.

    Article  CAS  Google Scholar 

  57. H. C. Cao, M. D. Thouless and A. G. Evans, ibid. 36 (1988) 2037.

    Article  CAS  Google Scholar 

  58. A. M. M. Gadalla and J. White, Trans. Brit. Ceram. Soc. 63 (1964) 39.

    CAS  Google Scholar 

  59. R. E. Loehman and A. P. Tomsia, Amer. Ceram. Soc. Bull. 67 (1988) 375.

    CAS  Google Scholar 

  60. A. L. Prill, H. W. Hayden and J. H. Brophy, Trans. AIME 230 (1964) 769.

    CAS  Google Scholar 

  61. O. F. De Lima, M. Krehl and K. Schulze, J. Mater. Sci. 20 (1985) 2464.

    Article  Google Scholar 

  62. R. O. Ritchie, R. M. Cannon Jr., B. J. Dalgleish, R. H. Dauskardt, and J. McNaney, Mater. Sci. Engng, (in press).

  63. D. Korn, G. Elssner, H. F. Fischmeister and M. Rühle, Acta Metall. Mater. 40 (1992) 5355.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shalz, M.L., Dalgleish, B.J., Tomsia, A.P. et al. Ceramic joining III bonding of alumina via Cu/Nb/Cu interlayers. JOURNAL OF MATERIALS SCIENCE 29, 3678–3690 (1994). https://doi.org/10.1007/BF00357335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357335

Keywords

Navigation