Skip to main content
Log in

Silica fracture

Part I A ring contraction model

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A quantitative ring contraction model for the fracture of amorphous silica is described based upon AM-1 semiempirical molecular orbital calculations of strained three- and four-fold silica rings and a five-fold ring-chain structure. The fracture barrier for five-fold ring-chain structures is 103 kcal mol−1. The barrier for fracture of a three-fold ring is 96 kcal mol−1. Fracture by contraction of four-fold rings has a lower energy barrier of 77 kcal mol−1 due to formation of pentacoordinate silicon transition states which produce trisiloxane rings and a broken siloxane bond. Thus, the ring contraction model predicts that a crack will follow a path which depends on the distribution of four-fold (or larger) rings in vacuum or fast fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Inglis, Trans. Inst. Nav. Arch. 55 (1913) 219.

    Google Scholar 

  2. A. A. Griffith, Trans. R. Soc. Lond. 221 (1921) 163.

    Article  Google Scholar 

  3. S. W. Freiman, in “Glass Science and Technology”, Vol. 5, “Elasticity and Strength in Glass”, edited by D. R. Uhlmann and N. J. Kreidl (Academic Press, New York, 1980) pp. 21–79.

    Google Scholar 

  4. J. H. Simmons, T. P. Swiler and Romulo Ochoa, J. Non-Cryst, Solids 134 (1991) 179.

    Article  CAS  Google Scholar 

  5. J. J. Mecholsky Jr and S. W. Freiman, J. Am. Ceram. Soc. 74 (1991) 3136.

    Article  CAS  Google Scholar 

  6. T. A. Michalske and B. C. Bunker, J. Appl. Phys. 56 (1984) 2686.

    Article  CAS  Google Scholar 

  7. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.

    Article  CAS  Google Scholar 

  8. M. J. S. Dewar and C. Jie, J. Am. Chem. Soc. 6 (1987) 1486.

    CAS  Google Scholar 

  9. MOPAC Version 6.1, Tektronix, Inc., CaChe Scientific, Beaverton, OR.

  10. L. P. Davis and L. W. Burggraf, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1988) p. 367.

    Google Scholar 

  11. L. W. Burggraf, L. P. Davis, and M. S. Gordon, in “Ultrastructure Processing of Advanced Materials”, edited by D. R. Uhlmann and D. R. Ulrich (Wiley, New York, 1992) p. 47.

    Google Scholar 

  12. M. S. Gordon, Iowa State University (1993), private communication.

  13. F. L. Galeener, J. Non-Cryst. Solids 49 (1982) 53.

    Article  CAS  Google Scholar 

  14. A. G. Revesz and G. V. Gibbs, in “The Physics of MOS Insulators”, edited by G. Lucousky, S. T. Pantelides and F. L. Galeener (Pergamon, New York, 1980) pp. 92–6.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

West, J.K., Hench, L.L. Silica fracture. JOURNAL OF MATERIALS SCIENCE 29, 3601–3606 (1994). https://doi.org/10.1007/BF00357324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357324

Keywords

Navigation