Skip to main content
Log in

Influence of casting and heat treatment parameters in controlling the properties of an Al-10 wt% Si-0.6 wt% Mg/SiC/20p composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of melting, casting and heat treatment parameters in determining the quality and tensile properties of an Al-10wt% Si-0.6wt% Mg/SiC/20p composite in comparison to its base alloy (359) has been studied. For the composite, melt-temperature, hydrogen level, and the cleanliness and stirring procedure, control, respectively, the harmful melt reactions of the SiC reinforcement with the alloy matrix, gas porosity, inclusion and oxide-film contamination, whereas casting conditions are mainly controlled through the use of a proper mold temperature and appropriate mold coating materials that enhance the feedability and reduce or eliminate the effects of shrinkage. The beneficial effect of the SiC reinforcement particles is two-fold: 1. they act as preferential sites for the nucleation of the eutectic silicon particles, leading to an overall refinement of the latter and lowering the amount of strontium modifier required from 150 to 90 ppm to achieve the same level of refinement in the as-cast microstructures of both composite and base alloy; 2. their presence also results in a more uniform redistribution of the silicon particles in the as-cast structure (cf. the large, irregular interdendritic regions of eutectic silicon observed in the base alloy). Both composite and base alloy exhibit a similar heat treatment response with respect to tensile properties for the various heat treatments applied. Addition of 20 vol% SiC to the base alloy (359) is seen to increase the Young's modulus and yield strength by 30–40%, marginally affect the ultimate tensile strength, but reduce the ductility by almost 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Apelien, S. Shivkumar and G. Sigworth, AFS Trans. 97 (1989) 727.

    Google Scholar 

  2. S. Shivkumar, S. Ricci, B. Steenhoff, D. Apelien and G. Sigworth, AFS Trans. 97 (1989) 791.

    Google Scholar 

  3. D. E. Hammond, AFS Trans. 97 (1989) 887.

    Google Scholar 

  4. F. H. Samuel, A. M. Samuel and H. Liu, AFS Trans. (in press).

  5. C. Dupuis, Z. Wang, J.-P. Martin and C. Allard, Light Met. (1992) 1055–68.

  6. ASTM Standards, “Standard specification for aluminum alloy permanent mold castings”, 02.02 (1990) 104.

  7. A. M. Samuel, H. Liu and F. H. Samuel, Compos. Sci. Technol. 49 (1993) 1.

    Article  CAS  Google Scholar 

  8. J. Boutin and C. E. Gallernaut, Report no. AR-89/0028, Arvida R&D Centre, Alcan International Limited, Jonquière, Québec, Canada, July 1989.

    Google Scholar 

  9. R. Provencher, G. Riverin and C. Celik, “Advances in production and fabrication of light metals and metal matrix composites”, edited by M. Avedesian, L. J. Larouche and J. Masounave (The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 1992) p. 589.

    Google Scholar 

  10. D. L. Rose, B. M. Cox and M. D. Skibo, AFS Trans. (in press).

  11. A. D. McLeod, in Proceedings of the ASM International Conference on Fabrication of Particulates Reinforced Metal Composites, Montreal, September 16–19, 1990, p. 25.

  12. C. E. Ransley and D. E. J. Talbot, J. Inst. Met. 84 (1955–56) 445.

    Google Scholar 

  13. Q. T. Fang and D. A. Granger, AFS Trans. 97 (1989) 989.

    Google Scholar 

  14. H. Liu and F. H. Samuel, AFS Trans. (in press).

  15. A. M. Samuel and F. H. Samuel, Metall. Trans. A 24A (1993) 1857.

    Article  CAS  Google Scholar 

  16. F. H. Samuel, H. Liu and A. M. Samuel, Metall. Trans. A 24A (1993) 1631.

    Article  CAS  Google Scholar 

  17. H. Liu and F. H. Samuel, Internal report, Arvida R&D Centre, Alcan International Limited, October 1991.

  18. D. Asselin, M. Bouchard and R. Provencher, “Development and applications of ceramic and new metal alloys”, edited by R. A. L. Drew and M. Mostaghaci (The Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, 1993) p. 233.

    Google Scholar 

  19. N. Wang, Z. Wang and G. C. Weatherly, Metall. Trans. A 23A (1992) 1423.

    Article  CAS  Google Scholar 

  20. F. H. Samuel and A. M. Samuel, Metall. Trans. A (in press).

  21. Y. Flom and R. J. Arsenault, Acta Metall. 37 (1989) 2413.

    Article  CAS  Google Scholar 

  22. F. Paray and J. E. Gruzleski, Cast Metals 5 (1993) 187.

    Article  Google Scholar 

  23. M. Taya, K. E. Lulay and D. J. Lloyd, Acta Metall. Mater. 39 (1991) 73.

    Article  CAS  Google Scholar 

  24. R. W. Bruner, in the Proceedings of the Conference “Heat treatment of Al-alloy castings: The state of the art”, Detroit, MI, 1979, 209.

  25. M. Tsukuda, S. Koike and K. Asano, J. Jpn. Inst. Light Metals 28 (1978) 531.

    Article  Google Scholar 

  26. G. S. Ghate, K. S. Raman and K. S. S. Murthy, in Proceedings of the Conference “International conference on aluminum-85 (INCAL)”, New Delhi, India, 1985, 485.

  27. J.-P. Cottu, J.-J. Coudere, B. Viguier and L. Bernard, J. Mater. Sci. 27 (1992) 3068.

    Article  CAS  Google Scholar 

  28. F. H. Samuel and A. M. Samuel, Unpublished work.

  29. B. Chamberlain and V. J. Zabek, AFS Trans. 81 (1973) 322.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samuel, A.M., Samuel, F.H. Influence of casting and heat treatment parameters in controlling the properties of an Al-10 wt% Si-0.6 wt% Mg/SiC/20p composite. JOURNAL OF MATERIALS SCIENCE 29, 3591–3600 (1994). https://doi.org/10.1007/BF00357323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357323

Keywords

Navigation