Skip to main content
Log in

Abnormal grain growth in alumina-doped hafnia ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hafnia (HfO2) ceramics containing 0.0, 5.0, and 10.0 vol% Al2O3, respectively, were sintered at 1600°C for various periods from 2–24 h. Abnormal grain growth was found to occur in the Al2O3-containing compositions. Hafnia containing 5.0 vol% Al2O3 exhibits an average grain size of almost double that of the Al2O3-free hafnia matrix, coupled with a much wider grain-size distribution. The material containing 10.0 vol% Al2O3 shows a smaller average grain size than the composition containing 5.0 vol% Al2O3. However, its average grain size is still larger than that of the Al2O3-free hafnia on sintering at 1600°C for more than 8 h. Microstructural characterization, carried out using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy dispersive analysis facility (EDX), indicated that there existed a continuous segregant layer at the grain boundaries and grain junctions in the Al2O3-free hafnia. Hafnia exhibits a low solubility in the segregant layer phase which inhibits the growth of the hafnia grains. The Al2O3 particles act as a scavenger for the silicon-rich glassy phase, damaging the continuous nature of the boundary segregant layer and promoting grain growth in the Al2O3-doped hafnia ceramics. The microstructural development at the sintering temperature is an overall result of the concurrent scavenger effect and grain pinning by the Al2O3 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Garvie, R. H. Hannink and R. T. Pascoe, Nature (Lond.) 258 (1975) 703.

    Article  CAS  Google Scholar 

  2. J. Wang, H. P. Li and R. Stevens, J. Mater. Sci. 27 (1992) 5397.

    Article  CAS  Google Scholar 

  3. R. Ruh and W. R. Corfield, J. Am. Ceram. Soc. 53 (1970) 126.

    Article  CAS  Google Scholar 

  4. H. J. Garrett, Am. Ceram. Soc. Bull. 42 (1963) 201.

    Google Scholar 

  5. J. Wang and R. Stevens, Ceram. Acta. 3 (1991) 41.

    Google Scholar 

  6. S. L. Dole, O. Hunter Jr and F. W. Calderwood, J. Am. Ceram. Soc. 63 (1980) 136.

    Article  CAS  Google Scholar 

  7. S. L. Dole, O. Hunter Jr and C. J. Wooge, ibid. 60 (1977) 488.

    Article  CAS  Google Scholar 

  8. F. F. Lange, J. Mater. Sci. 17 (1982) 225.

    Article  CAS  Google Scholar 

  9. H. Bernard, Report CEA-R-5090. Commissariat a l'Energie Atomique, CEN-Saclay, France (1981).

    Google Scholar 

  10. E. P. Butler and J. Drennan, J. Am. Ceram. Soc. 65 (1982) 474.

    Article  CAS  Google Scholar 

  11. R. Stevens, “An introduction to zirconia” (Magnesium Elektron, Twickenham, UK, 1986).

    Google Scholar 

  12. C. E. Curtis and H. G. Sowman, J. Am. Ceram. Soc. 36 (1953) 190.

    Article  CAS  Google Scholar 

  13. M. Ruhle, N. Claussen and A. H. Heuer, in “Advances in Ceramics,” Vol. 12, “Science and technology of zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984 pp. 352–70.

    Google Scholar 

  14. H. Schubert, N. Claussen and M. Ruhle, ibid.“Advances in Ceramics,” Vol.12, “Science and technology of zirconia II”, edited by N. Claussen, M. Ruhle and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984 p. 766–773.

    Google Scholar 

  15. A. J. A. Winnubst, G. S. A. Theunissen, W. F. M. Groot Zevert and A. J. Burggraaf, in “Science of ceramics,” Vol. 14, edited by D. Taylor (Institute of Ceramics, Stoke-on-Trent, UK, 1988) pp. 309–14.

    Google Scholar 

  16. T. Stoto, M. Nauer and C. Carry, J. Am. Ceram. Soc. 74 (1991) 2615.

    Article  CAS  Google Scholar 

  17. K. Keizer, M. J. Verkerk and A. J. Burggaaf, Ceram. Int. 5 (1979) 143.

    Article  CAS  Google Scholar 

  18. R. W. Rice, S. W. Freiman and P. F. Becher, J. Am. Ceram. Soc. 64 (1981) 345.

    Article  CAS  Google Scholar 

  19. R. W. Rice and S. W. Freiman, ibid. 64 (1981) 350.

    Article  CAS  Google Scholar 

  20. R. W. Davidge, Acta Metall. 29 (1981) 1695.

    Article  CAS  Google Scholar 

  21. F. A. Nichols, J. Appl. Phys. 37 (1966) 4599.

    Article  CAS  Google Scholar 

  22. F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 70 (1987) 827.

    Article  CAS  Google Scholar 

  23. A. V. Shevchenko, L. M. Lopato and G. I. Gerasimyuk, Izv. Akad. Nauk, SSSR. Neorg. Mat. 26 (1990) 839.

    CAS  Google Scholar 

  24. S. G. Popov, M. V. Paromova and Z. Ya Kulikova, ibid.Izv. Akad. Nauk, SSSR. Neorg. Mat. 26 (1990) 1002.

    CAS  Google Scholar 

  25. K. C. Radford and R. J. Bratton, J. Mater. Sci. 14 (1979) 59.

    Article  CAS  Google Scholar 

  26. K. Niihara, J. Ceram. Soc. Jpn 99 (1991) 945.

    Article  Google Scholar 

  27. F. F. Lange and M. M. Hirlinger, J. Am. Ceram. Soc. 67 (1984) 164.

    Article  CAS  Google Scholar 

  28. S. Hori, R. Kurita, M. Yoshimura and S. Somiya, in “Advances in Ceramics, Vol. 24A, “Science and technology of zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (American Ceramics Society, Westerville, OH, 1988) pp. 423–9.

    Google Scholar 

  29. M. R. Anseau, J. P. Biloque and P. Fierens, J. Mater. Sci. 11 (1976) 578.

    Article  CAS  Google Scholar 

  30. J. S. Reed, “Introduction to the principles of ceramic processing” (Wiley, Singapore, 1989).

    Google Scholar 

  31. N. M. Beekmans and L. Heyne, Electrochim. Acta 21 (1976) 303.

    Article  CAS  Google Scholar 

  32. A. J. G. Ellison and A. Navrotsky, J. Am. Ceram. Soc. 75 (1992) 1430.

    Article  CAS  Google Scholar 

  33. I. A. Aksay, D. M. Dabbs and M. Sarikaya, ibid. 74 (1991) 2343.

    Article  CAS  Google Scholar 

  34. R. F. Davis and J. A. Pask, in “High temperature oxides”, Part IV, “Refractory glasses, glass-ceramics and ceramics,” edited by A. M. Alper (Academic Press, New York, 1970) pp. 37–76.

    Google Scholar 

  35. R. R. Dayal, R. E. Johnson and A. Muan, J. Am. Ceram. Soc. 50 (1967) 537.

    Article  CAS  Google Scholar 

  36. E. Di Rupo and M. R. Anseau, J. Mater. Sci. 15 (1980) 114.

    Article  Google Scholar 

  37. M. L. Mecartney, J. Am. Ceram. Soc. 70 (1987) 54.

    Article  CAS  Google Scholar 

  38. Y. Yoshizawa and T. Sakuma, ibid. 73 (1990) 3069.

    Article  CAS  Google Scholar 

  39. J. F. Shackelford, P. S. Nicholson and W. W. Smeltzer, Am. Ceram. Soc. Bull. 53 (1974) 865.

    CAS  Google Scholar 

  40. R. Chaim, A. H., Heuer and D. G. Brandon, J. Am. Ceram. Soc. 69 (1986) 243.

    Article  CAS  Google Scholar 

  41. F. F. Lange, ibid. 69 (1986) 240.

    Article  CAS  Google Scholar 

  42. S. Dou, P. D. Pacey, C. R. Masson and B. R. Marple, ibid. 68 (1985) C-80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Ponton, C.B. & Marquis, P.M. Abnormal grain growth in alumina-doped hafnia ceramics. JOURNAL OF MATERIALS SCIENCE 29, 3577–3590 (1994). https://doi.org/10.1007/BF00357322

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357322

Keywords

Navigation