Skip to main content
Log in

Thomas-fermi approach to the theory of optical constants in the XUV range

  • X-Ray Lasers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The theory of many-electron atoms and ions and their interaction with XUV radiation is one of the fundamental aspects of X-ray laser physics. The topic of this paper is the theory of optical constants of many-electron atoms in the XUV which define the dielectric susceptibility of materials in this wavelength range. We use the statistical description of atomic electrons and, as a starting point, develop the rigorous theory of the dynamical response of a Thomas-Fermi atom. The equations obtained are used with proper boundary conditions to find the dynamical polarizability and photoabsorption of many-electron atoms. The results are employed for an analysis of existing experimental data on optical constants of Ar and Si. A procedure is suggested to include into the theory the effects of atomic electron shell structure. This leads to more reasonable results and better agreement with experiment. In particular, the effect of the Cooper minimum in the atomic photoionization cross-section can be described.

As the existing experimental data on optical constants of materials in XUV are not complete and systematic, we use the theoretical photoionization cross-sections and polarizabilities in constructing and predicting of parameters of X-ray optical systems. Some results on reflectivity of “whispering gallery” mirrors in the 150<λ<500 Å wavelength range are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Trebes, S.B. Brown, E.M. Campbell, D.L. Matthews, D.G. Nilson, G.F. Stone, D.A. Whelan: Science 238, 515 (1987)

    Google Scholar 

  2. C.H. Skinner, D. Kim, A. Wouters, D. Vorhees, S. Suckewer: Proc. SPIE 831, 262 (1987)

    Google Scholar 

  3. V.B. Berestetskii, E.M. Lifshits, L.P. Pitaevskii: Quantum Electrodynamics (Pergamon, Oxford 1982)

    Google Scholar 

  4. S. Lundqvist: In Theory of the inhomogeneous electron gas, ed. by S. Lundqvist, N.H. March (Plenum, New York 1983)

    Google Scholar 

  5. L.D. Landau, E.M. Lifshits: Quantum Mechanics (Pergamon, Oxford 1965)

    Google Scholar 

  6. A.V. Vinogradov, O.I. Tolstikhin: Journal of Soviet Laser Research 1 (1990) (Plenum, New York)

    Google Scholar 

  7. A.V. Vinogradov, V.V. Pustovalov, V.P. Shevel'ko: JETP 63, 477 (1972) [English transl.: Sov. Phys. JETP 36, 252 (1972)]

    Google Scholar 

  8. V.L. Ginzburg: Propagation of electromagnetic waves in plasmas, 2nd ed. (Pergamon, Oxford 1970)

    Google Scholar 

  9. W. Brandt, S. Lundqvist: Phys. Rev. 139A, 612 (1965)

    Google Scholar 

  10. A.V. Vinogradov, O.I. Tolstikhin: JETP 96, 61 (1989) (in Russian)

    Google Scholar 

  11. A.V. Vinogradov, O.I. Tolstikhin: JETP 96, 1204 (1989) (in Russian)

    Google Scholar 

  12. B.L. Henke, P. Lee, T.J. Tanaka, R.L. Shimbakuro, B.K. Fujikawa: At. Data Nucl. Data Tables 27, 1 (1982)

    Google Scholar 

  13. J.A. Ball, J.A. Wheeler, E.L. Fireman: Rev. Mod. Phys. 45, 333 (1973)

    Google Scholar 

  14. G.V. Gadiyak, D.A. Kirzhnits, Yu.E. Lozovik: JETP 69, 122 (1975) [English transl.: Sov. Phys. JETP 42, 62 (1975)]

    Google Scholar 

  15. L.A. Vainshtein, V.P. Shevel'ko: Structure and characteristics of ions in the hot plasma (Nauka, Moscow 1986) (in Russian)

    Google Scholar 

  16. M.Ya. Amusia: Atomic Photoeffect (Nauka, Moscow 1987) (in Russian)

    Google Scholar 

  17. Handbook of optical constants of solids. Ed. by D. Palic (Academic, New York 1985)

  18. D.L. Windt, W.C. Cash, Jr., M. Scott, P. Arendt, B. Newnam, R.F. Fisher, A.B. Swartzlander, P.Z. Takacs, J.M. Pinneo: Appl. Opt. 27, 279 (1988)

    Google Scholar 

  19. T.W. Barbee: Paper presented to Ninth Int. Conf. on VUV radiation Physics, Honolulu, Hawaii, 17–19 July, 1989

  20. I.V. Kozhevnikov, A.V. Vinogradov: Phys. Scr. 17, 137 (1987)

    Google Scholar 

  21. Soft X-ray Optics and technology. Proc. SPIE 563 (1985); 733 (1986)

  22. A.V. Vinogradov, V.F. Kovalev, I.V. Kozhevnikov, V.V. Pustovalov: J. Tech. Phys. 55, 244 (1985); 55, 567 (1985) [English transl.: Sov. Phys. Tech. Phys. 30, 145 (1985); 30, 335 (1985)]

    Google Scholar 

  23. A.V. Vinogradov, I.V. Kozhevnikov, A.V. Popov: Opt. Commun. 47, 361 (1983)

    Google Scholar 

  24. A.V. Vinogradov, V.M. Elinson, V.I. Zhilina, N.N. Zorev, G.F. Ivanovsky, I.V. Kozhevnikov, M.E. Plotkin, S.I. Sagitov, V.V. Sleptsov: Nucl. Instrum. Methods A 261, 101 (1987)

    Google Scholar 

  25. A.V. Vinogradov et al.: Opt. Spectrosc. to be published (in Russian)

  26. G.V. Marr, J.B. West: At. Data Nucl. Data Tables 18, 497 (1976)

    Google Scholar 

  27. J.B. West, J. Morton: At. Data Nucl. Data Tables 22, 103 (1978)

    Google Scholar 

  28. E.B. Saloman, J.H. Hubbell, J.H. Scofield: At. Data Nucl. Data Tables 38, 1 (1988)

    Google Scholar 

  29. F. Rosebury: Handbook of Electron Tube and Vacuum Techniques. (Massachusetts 1964)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolstikhin, O.I., Vinogradov, A.V. Thomas-fermi approach to the theory of optical constants in the XUV range. Appl. Phys. B 50, 213–220 (1990). https://doi.org/10.1007/BF00357286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357286

PACS

Navigation