Skip to main content
Log in

Effective rates for li-like ions; calculated XUV gains in Al10+

  • X-Ray Lasers
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work concerns the modelling of the Li-like recombination X-ray laser. We have improved the description of the ionization dynamics and the gain production in a recombining laser-produced plasma. The contribution of the Li-like excited levels (up to n=30), which are assumed to follow a quasi-steady state evolution with respect to the ionic populations, is now incorporated in the ionization and recombination rates connecting He-like and Li-like ionic species. Simple expressions for these effective rates are derived. The number of Li-like excited levels to be included in the model, as well as the determination of the lower limit of the thermal band are examined. Predicted 3d-4f gain values (3 cm−1 at λ=154.6 Å) when simulating fibre targets cylindrically illuminated by a short laser pulse are now in good agreement with experiments. Persistent discrepancies in other cases (3d-5f inversion or slab targets) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Jaeglé, G. Jamelot, A. Carillon, A. Klisnick, A. Sureau, H. Guennou: J. Opt. Soc. Am. B 4, 563 (1987)

    Google Scholar 

  2. G. Jamelot, A. Klisnick, A. Carillon, H. Guennou, A. Sureau, P. Jaeglé: J. Phys. B 18, 4647 (1985)

    Google Scholar 

  3. P. Jaeglé, A. Carillon, A. Klisnick, G. Jamelot, H. Guennou, A. Sureau: Europhys. Lett. 1, 555 (1986)

    Google Scholar 

  4. A. Carillon, M.J. Edwards, M. Henshaw, P. Jaeglé, G. Jamelot, M.H. Key, G.P. Kiehn, A. Klisnick, C.L.S. Lewis, D. O'Neill, G.L. Pert, S.A. Ramsden, C. Regan, S.J. Rose, R. Smith, O. Willi: To be published in J. Phys. B

  5. C. Chenais-Popovics, R. Corbett, C.J. Hooker, M.H. Key, G.P. Kiehn, C.L.S. Lewis, G.J. Pert, C. Regan, S.J. Rose, S. Sadaat, R. Smith, T. Tomie, O. Willi: Phys. Rev. Lett. 59, 2161 (1987)

    Google Scholar 

  6. Y. Kato, P.R. Herman, T. Tachi, K. Shihoyama, K. Kamei, H. Shiraga: Proc. of Int. Symposium on Short Wavelength Lasers and their Applications, Osaka, Japan (Springer, Berlin, Heidelberg 1988) p. 57

  7. S. Suckewer, C.H. Skinner, H. Milchberg, C. Keane, D. Voorhees: Phys. Rev. Lett. 55, 1753 (1985)

    Google Scholar 

  8. J.C. Moreno, H.R. Griem, S. Goldsmith, J. Knauer: Phys. Rev. A 39, 6033 (1989)

    Google Scholar 

  9. D.L. Matthews, P.L. Hagelstein, M.D. Rosen, M.J. Eckart, N.M. Ceglio, A. Hazi, H. Medecki, B.J. McGowan, J.E. Trebes, B.L. Whitten, E.M. Campbell, C.W. Hatcher, A.M. Hawryluk, R.L. Kauffman, L.D. Pleasance, G. Rambach, G.H. Scofield, G. Stone, T. Weaver: Phys. Rev. Lett. 54, 110 (1985)

    Google Scholar 

  10. M. Louis-Jacquet, J.L. Bourgade, J. Bruneau, P. Combis, J.-P. Jadaud, J.-P. Le Breton, D. Naccache, G. Niérat, J.-P. Perrine, G. Thiell (DLPP); A. Decoster, S. Jacquemot, O. Peyrusse (DPGAA); D. Matthews, C. Keane, B. MacGowan (LLNL): Rapport DAM/CEL-V/DLPP/EPL No. 173/88 (1988)

  11. T.N. Lee, E.A. McLean, R.C. Elton: Phys. Rev. Lett. 59, 1185 (1987)

    Google Scholar 

  12. C.W. Clark, M.G. Littman, R. Miles, T.J. McIlrath, C.H. Skinner, S. Suckewer, E. Valeo: J. Opt. Soc. Am. B 3, 371 (1986)

    Google Scholar 

  13. D. Goodwin, E.E. Fill: J. Appl. Phys. 64, 1005 (1988)

    Google Scholar 

  14. C.H. Skinner, D. Dicicco, D. Kim, L. Meixler, C.H. Nam, W. Tighe, S. Suckewer: IEEE Trans. Plasma Sci. 16, 512 (1988)

    Google Scholar 

  15. G. Jamelot, A. Carillon, H. Guennou, P. Jaeglé, A. Klisnick, A. Sureau: Appl. Phys. B

  16. J. Virmont: GRECO Internal Reports (1979, 1980) unpublished; see also E. Goldman: Plasma Phys. 15, 289 (1973)

  17. J.C. Gauthier, J.P. Geindre, N. Grandjouan, J. Virmont: J. Phys. D 16, 321 (1983)

    Google Scholar 

  18. H. Guennou: These d'Etat (1983) Orsay

  19. A. Sureau, H. Guennou, M. Cornille: J. Phys. B 17, 541 (1984)

    Google Scholar 

  20. A. Sureau, H. Guennou, C. Möller: Europhys. Lett. 5, 19 (1988)

    Google Scholar 

  21. H. Guennou, A. Sureau: J. Phys. B 20, 919 (1987)

    Google Scholar 

  22. A. Klisnick, H. Guennou, J. Virmont: J. Phys. 47, C6, 345 (1986)

    Google Scholar 

  23. D.R. Bates, A.E. Kingston, R.W.P. McWhirter: Proc. R. Soc. Lond. A 267, 297 (1962)

    Google Scholar 

  24. I.I. Sobelman, L.A. Vainshtein, E.A. Yukov: Excitation of Atoms and Broadening of Spectral Lines (Springer, Berlin, Heidelberg 1981) p. 3

    Google Scholar 

  25. A. Sureau: Theor. Chim. Acta 8, 76 (1967)

    Google Scholar 

  26. A. Unsöld: Physik der Sternatmosphären, 2nd edn. (Springer, Berlin, Heidelberg 1955)

    Google Scholar 

  27. R.U. Datla, H.J. Kunze: Phys. Rev. A 37, 4614 (1988)

    Google Scholar 

  28. H. Van Regmorter: Astrophys. J. 136, 906 (1962)

    Google Scholar 

  29. R. Mewe: Astron. Astrophys. 20, 215 (1972)

    Google Scholar 

  30. M.J. Seaton: Planet Sci. 12, 55 (1964)

    Google Scholar 

  31. C. de Michelis, M. Mattioli: Nucl. Fusion 21, 677 (1981)

    Google Scholar 

  32. M.J. Seaton: Mon. Not. R. Astron. Soc. 119, 81 (1959)

    Google Scholar 

  33. H.R. Griem: Plasma Spectroscopy (McGraw-Hill, New York 1964) p. 139

    Google Scholar 

  34. R.M. More: J. Quant. Spectros. Radiat. Transfer 27, 345 (1982)

    Google Scholar 

  35. J.C. Stewart, K.D. Pyatt: Astrophys. J. 144, 1203 (1966)

    Google Scholar 

  36. R. Wilson: J. Quant. Spectros. Radiat. Transfer 2, 477 (1962)

    Google Scholar 

  37. R.W.P. McWhirter: Plasma Diagnostic Techniques, ed. by R.H. Huddlestone, S.L. Leonard (Academic, New York 1965) p. 224

    Google Scholar 

  38. R.W.P. McWhirter, A.G. Hearn: Proc. Phys. Soc. 82, 641 (1963)

    Google Scholar 

  39. D. Kim, C.H. Skinner, A. Wouters, E. Valeo, D. Voorhees, S. Suckewer: J. Opt. Soc. Am. B 6, 115 (1989)

    Google Scholar 

  40. M.H. Key: Advances in Atomic and Molecular Physics, Vol. 16, ed. by D.R. Bates, B. Bederson (Academic, New York 1980) p. 212

    Google Scholar 

  41. Y.T. Lee: J. Quant. Spectros. Radiat. Transfer 38, 131 (1987)

    Google Scholar 

  42. D. Salzmann: Phys. Rev. A 20, 1704 (1979)

    Google Scholar 

  43. M. Cacciatore, M. Capitelli: Physica 84C, 267 (1976)

    Google Scholar 

  44. C.C. Limbaugh, A.A. Mason: Phys. Rev. A 4, 2368 (1971)

    Google Scholar 

  45. R. Epstein: Phys. Fluids B 1, 214 (1989)

    Google Scholar 

  46. G.J. Pert: J. Opt. Soc. Am. B 4, 602 (1987)

    Google Scholar 

  47. J.F. Seely, C.M. Brown, U. Feldman, M. Richardson, B. Yaakobi, W.E. Behring: Opt. Commun. 54, 289 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

LULI: National Facility for the Use of Intense Lasers under the CNRS and Ecole Polytechnique, F-91128 Palaiseau, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klisnick, A., Sureau, A., Guennou, H. et al. Effective rates for li-like ions; calculated XUV gains in Al10+ . Appl. Phys. B 50, 153–164 (1990). https://doi.org/10.1007/BF00357278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357278

PACS

Navigation