Skip to main content
Log in

Chromosome banding in Amphibia

XVI. High-resolution replication banding patterns in Xenopus laevis

  • Original Articles
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

High-resolution replication banding patterns were induced in prometaphase and prophase chromosomes of Xenopus laevis by treating kidney cell lines with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession. Up to 650 early and late replicating bands per haploid karyotype were demonstrated in the very long prophase chromosomes. This permits an exact identification of all chromosome pairs of X. laevis. Late replicating heterochromatin was located by analysing the time sequence of replication throughout the second half of S-phase. Neither heteromorphic sex chromosomes nor sex chromosome-specific replication bands were demonstrated in the heterogametic ZW females of X. laevis. A detailed examination of the BrdU/dT-labelled prometaphases and prophases revealed that the X. laevis chromosomes can be arranged in groups of four (quartets), most of which show conspicuous similarities in length, centromere position, and replication pattern. This is interpreted as further evidence for an ancient allotetraploid origin of X. laevis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida ToledoLF, Viegas-PéquignotE, ForestiF, Toledo FilhoSA, DutrillauxB (1988) BrdU replication patterns demonstrating chromosome homoeologies in two fish species, genus Eigenmannia. Cytogenet Cell Genet 48: 117–120

    Google Scholar 

  • BianchiNO, BianchiMS, Vidal-RiojaL (1973) Heterochromatin late replication and secondary constrictions in the chromosome complement of Leptodactylus ocellatus. Caryologia 26: 397–403

    Google Scholar 

  • BisbeeCA, BakerMA WilsonAC, Hadji-AzimiI, FischbergM (1977) Albumin phylogeny for clawed frogs (Xenopus). Science 195: 785–787

    Google Scholar 

  • ChangCY, WitschiE (1955) Breeding of sex-reversed males of Xenopus laevis Daudin. Proc Soc Exp Biol Med 89: 150–152

    Google Scholar 

  • ChangCY, WitschiE (1956) Genic control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93: 140–144

    Google Scholar 

  • DutrillauxB (1975) Traitements discontinus par le BrdU et coloration par l'acridine orange: obtention de marquages R, Q et intermédiaires. Chromosoma 52: 261–273

    Google Scholar 

  • EngelW, SchmidM (1981) H-Y antigen as a tool for the determination of the heterogametic sex in Amphibia. Cytogenet Cell Genet 30: 130–136

    Google Scholar 

  • EngelW, SchmidtkeJ (1975) Die Bedeutung von Genduplikationen für die Evolution der Wirbeltiere. In: BeckerPE (ed) Humangenetik, vol 1/3. Thieme, Stuttgart, pp 618–654

    Google Scholar 

  • EstesR (1975) Xenopus from the Palaeocene of Brazil and its zoo-geographic importance. Nature 254: 48–49

    Google Scholar 

  • GallienL (1955) Descendance unisexuée d'une femelle de Xenopus laevis Daud. ayant subi, pendant sa phase larvaire, l'action gynogène du benzoate d'oestradiol. C R Acad Sci 240: 913–915

    Google Scholar 

  • GallienL (1956) Inversion expérimentale du sexe chez un anoure inférieur Xenopus laevis Daudin. Analyse de conséquences génétiques. Bull Biol Fr Belg 90: 163–183

    Google Scholar 

  • HazenMJ, VillanuevaA, JuarranzA, CaneteM, StockertJC (1985) Photosensitizing dyes and fluorochromes as substitutes for 33258 Hoechst in the fluorescence-plus-Giemsa (FPG) chromosome technique. Histochemistry 83: 241–244

    Google Scholar 

  • HennenS, MizunoS, MacgregorHC (1975) In situ hybridization of ribosomal DNA labeled with 125iodine to metaphase and lampbrush chromosomes from newts. Chromosoma 50: 349–369

    Google Scholar 

  • IkebeC, Kuro-oM, YamadaH, KohnoS (1990a) Cytogenetic studies of Hynobiidae (Urodela). X. Morphological variation of chromosome 10 in ten pond-type Hynobius from Korea and Japan, with comments on phylogenetic relationships. J Evol Biol 3: 155–170

    Google Scholar 

  • IkebeC, Kuro-oM, YamamotoT, KohnoS (1990b) Cytogenetic studies of Hynobiidae (Urodela). XI. Banding karyotype of Salamandrella keyserlingii Dybowski and a comparison with those of Hynobius species. Cytogenet Cell Genet 54: 169–171

    Google Scholar 

  • ISCN (1981) An international system for human cytogenetic nomenclature — high resolution banding. Cytogenet Cell Genet 31: 1–23

    Google Scholar 

  • JeffreysA, WilsonV, WoodD, SimonsJP (1980) Linkage of adult α- and β-globin genes in X. laevis and gene duplication by tetraploidization. Cell 21: 555–564

    Google Scholar 

  • KingM (1990) Amphibia. In: JohnB (ed) Animal cytogenetics, vol 4/2. Gebrüder Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Kuro-oM, IkebeC, KohnoS (1986) Cytogenetic studies of Hynobiidae (Urodela). IV. DNA replication bands (R-banding) in the genus Hynobius and the banding karyotype of Hynobius nigrescens Stejneger. Cytogenet Cell Genet 43: 14–18

    Google Scholar 

  • Kuro-oM, IkebeC, KohnoS (1987) Cytogenetic studies of Hynobiidae (Urodela). VI. R-banding patterns in five pond-type Hynobius from Korea and Japan. Cytogenet Cell Genet 44: 69–75

    Google Scholar 

  • LattSA (1973) Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc Natl Acad Sci USA 70: 3395–3399

    Google Scholar 

  • LeipoldtM (1983) Towards an understanding of the molecular mechanisms regulating gene expression during diploidization in phylogenetically polyploid lower vertebrates. Hum Genet 65: 11–18

    Google Scholar 

  • MacgregorHC, KezerJ (1973) The nucleolar organizer of Plethodon cinereus cinereus (Green). I. Location of the nucleolar organizer by in situ nucleic acid hybridization. Chromosoma 42: 415–426

    Google Scholar 

  • MacgregorHC, VladM, BarnettL (1977) An investigation of some problems concerning nucleolus organizers in salamanders. Chromosoma 59: 283–299

    Google Scholar 

  • MikamoK, WitschiE (1963a) Functional sex-reversal in genetic females of Xenopus laevis, induced by implanted testes. Genetics 48: 1411–1421

    Google Scholar 

  • MikamoK, WitschiE (1963b) Zuchtversuche mit geschlechtskonvertierten Krallenfröschen (Xenopus laevis). Experientia 19: 536–537

    Google Scholar 

  • MikamoK, WitschiE (1964) Masculinization and breeding of the WW Xenopus. Experientia 20: 622–623

    Google Scholar 

  • MikamoK, WitschiE (1966) The mitotic chromosomes in Xenopus laevis (Daudin): normal, sex reversed and female WW. Cytogenet Cell Genet 5: 1–19

    Google Scholar 

  • MillerL, BrownDD (1969) Variation in the activity of nucleolar organizers and their ribosomal gene content. Chromosoma 28: 430–444

    Google Scholar 

  • MillerL, KnowlandJ (1970) Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nucleolar types. J Mol Biol 53: 329–338

    Google Scholar 

  • MorescalchiA (1963) Conferma della presenza di eterocromosomi in Xenopus laevis Daudin. Rend Acc Sci (Napoli) Ser 4 30: 310–314

    Google Scholar 

  • MorescalchiA (1977) Phylogenetic aspects of karyological evidence. In: HechtMK, GoodyPC, HechtBM (eds) Major patterns in vertebrate evolution. Plenum Press, New York London, pp 149–167

    Google Scholar 

  • NardiI, Barsacchi-PiloneG, BatistoniR, AndronicoF (1977) Chromosome location of the ribosomal RNA genes in Triturus vulgaris meridionalis (Amphibia, Urodela). II. Intraspecific variability in number and position of the chromosome loci for 18S+28S ribosomal RNA. Chromosoma 64: 67–84

    Google Scholar 

  • OhnoS (1970) Evolution by gene duplication. Springer, Berlin Heidelberg New York

    Google Scholar 

  • OlmoE (1973) Quantitative variations in the nuclear DNA and phylogenesis of the Amphibia. Caryologia 26: 43–68

    Google Scholar 

  • PerryP, WolffS (1974) New Giemsa method for the differential stainign of sister chromatids. Nature 251: 156–158

    Google Scholar 

  • SchemppW, SchmidM (1981) Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma 83: 697–710

    Google Scholar 

  • SchmidM (1978) Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66: 361–388

    Google Scholar 

  • SchmidM (1980) Chromosome banding in Amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosoma 77: 83–103

    Google Scholar 

  • SchmidM (1982) Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87: 327–344

    Google Scholar 

  • SchmidM, GuttenbachM (1988) Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma 97: 101–114

    Google Scholar 

  • SchmidM, HaafT (1989) Origin and evolution of sex chromosomes in Amphibia: the cytogenetic data. In: WachtelSS (ed) Evolutionary mechanisms in sex determination. CRC Press, Boca Raton, Florida, pp 37–56

    Google Scholar 

  • SchmidM, HaafT, SchemppW (1985) Chromosome banding in Amphibia. IX. The polyploid karyotypes of Odontophrynus americanus and Ceratophrys ornata (Anura, Leptodactylidae). Chromosoma 91: 172–184

    Google Scholar 

  • SchmidM, VitelliL, BatistoniR (1987) Chromosome banding in Amphibia. XI. Constitutive heterochromatin, nucleolus organizers, 18S+28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95: 271–284

    Google Scholar 

  • SchmidM, EnderleE, SchindlerD, SchemppW (1989) Chromosome banding and DNA replication patterns in bird karyotypes. Cytogenet Cell Genet 52: 139–146

    Google Scholar 

  • SekiyaK, NakagawaH (1983) Cytogenetics of Xenopus laevis. I. G-banding pattern of Xenopus laevis chromosomes. Experientia 39: 786–787

    Google Scholar 

  • StockAD (1984) The occurrence of G-bands in the mitotic chromosomes of the amphibian Xenopus muelleri. Genetica 64: 225–228

    Google Scholar 

  • StockAD, MengdenGA (1975) Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians. Chromosoma 50: 69–77

    Google Scholar 

  • ThiébaudCH, FischbergM (1977) DNA content in the genus Xenopus. Chromosoma 59: 253–257

    Google Scholar 

  • TymowskaJ (1973) Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenet Cell Genet 12: 297–304

    Google Scholar 

  • TymowskaJ (1977) A comparative study of the karyotypes of eight Xenopus species and subspecies possessing a 36-chromosome complement. Cytogenet Cell Genet 18: 165–181

    Google Scholar 

  • TymowskaJ, FischbergM (1973) Chromosome complements of the genus Xenopus. Chromosoma 44: 335–342

    Google Scholar 

  • TymowskaJ, FischbergM (1980a) The karyotype of the hexaploid species Xenopus ruwenzoriensis. Fischberg and Kobel (Anura: Pipidae). Cytogenet Cell Genet 27: 39–44

    Google Scholar 

  • TymowskaJ, FischbergM (1980b) The karyotype of Xenopus wittei Tinsley, Kobel, and Fischberg, another tetraploid anuran species (Pipidae). Cytogenet Cell Genet 28: 208–212

    Google Scholar 

  • TymowskaJ, FischbergM (1982) A comparison of the karyotype, constitutive heterochromatin, and nucleolar organizer regions of the new tetraploid species Xenopus epitropicalis Fischberg and Picard with those of Xenopus tropicalis Gray (Anura, Pipidae). Cytogenet Cell Genet 34: 149–157

    Google Scholar 

  • TymowskaJ, KobelHR (1972) Karyotype analysis of Xenopus muelleri (Peters) and Xenopus laevis (Daudin), Pipidae. Cytogenet Cell Genet 11:270–278

    Google Scholar 

  • TymowskaJ, FischbergM, TinsleyRC (1977) The karyotype of the tetraploid species Xenopus vestitus Laurent (Anura: Pipidae). Cytogenet Cell Genet 19:344–354

    Google Scholar 

  • WachtelSS, KooGC, BoyseEA (1975) Evolutionary conservation of H-Y (male) antigen. Nature 254:270–272

    Google Scholar 

  • WeilerC, OhnoS (1962) Cytological confirmation of female heterogamety in the African water frog (Xenopus laevis). Cytogenet Cell Genet 1:217–223

    Google Scholar 

  • Yonenaga-YassudaY, KasaharaS, ChuTH, RodriguesMT (1988) High-resolution RBG-banding pattern in the genus Tropidurus (Sauria, Iguanidae). Cytogenet Cell Genet 48:68–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Prof. Wolfgang Engel on the occasion of his 50th birthday

by H.C. Macgregor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Steinlein, C. Chromosome banding in Amphibia. Chromosoma 101, 123–132 (1991). https://doi.org/10.1007/BF00357062

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357062

Keywords

Navigation