Journal of Materials Science

, Volume 30, Issue 22, pp 5691–5699 | Cite as

Dissolution kinetics of glass fibres in saline solution: in vitro persistence of a sparingly soluble aluminium-rich leached layer

  • P. Baillif
  • B. Chouikhi
  • L. Barbanson
  • J. C. Touray


The dissolution of boro-silicate glass fibres in physiological saline solution was studied at 37°C either in a non-refilled or in a periodically refilled reactor. Large variations of the weight losses were observed with time and refilling frequencies. The weight losses were found to increase with the refilling frequency. Sections of altered fibres, studied using scanning electron microscopy, show an outer hydrated layer surrounding an unaltered glass core. The residual silicon- and aluminium-rich hydrated layer (Al/Si=0.2, H2O/Al=16–19) was characterized by X-ray photoelectron spectrometry, energy dispersive spectrometry and thermogravimetric analysis. The thickness of the hydrated layer may be theoretically calculated from the degree of reaction progression. Under unsteady state conditions, most of the dissolution occurs at the fresh glass-hydrated layer boundary, through selective processes. The proposed model explains the persistence of the aluminium-rich residue when dissolution proceeds in non-replenished systems.


Thermogravimetric Analysis Saline Solution Glass Fibre Physiological Saline Energy Dispersive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Scholze, Glastech. Ber. 61 (1988) 161.Google Scholar
  2. 2.
    R. M. Potter and S. M. Mattson, ibid. 64 (1991) 16.Google Scholar
  3. 3.
    S. M. Mattson, Environ. Health Perspectives 102, supp. 5 (1994) 87.Google Scholar
  4. 4.
    J. C. Touray and P. Baillif, ibid. 102, supp. 5 (1994) 25.Google Scholar
  5. 5.
    P. Baillif and J. C. Touray, ibid. 102, supp. 5 (1994) 77.Google Scholar
  6. 6.
    S. Thelohan and A. de Meringo, ibid. 102, supp. 5 (1994) 91.Google Scholar
  7. 7.
    H. Scholze and R. Conradt, Ann. Occup. Hyg. 31 (1987) 683.Google Scholar
  8. 8.
    H. Förster and H. Tiesler, Glastech. Ber. 66 (1993) 255.Google Scholar
  9. 9.
    B. Chouikhi, P. Baillif and J. C. Touray, C. R. Acad. Sci. Paris 318 série II (1994) 1051.Google Scholar
  10. 10.
    A. Paul, “Chemistry of glasses” (Chapman and Hall, New York, 1982).CrossRefGoogle Scholar
  11. 11.
    J. Zarzycki, “Les verres et l'état vitreux” (Masson, Paris, 1982).Google Scholar
  12. 12.
    B. M. J. Smets, Philips Tech. Rev. 42 (1985) 59.Google Scholar
  13. 13.
    J. L. Crovisier, J. Honnorez and J. P. Eberhart, Geochim. Cosmochim. Acta 51 (1987) 2977.CrossRefGoogle Scholar
  14. 14.
    K. G. Knauss and T. J. Wolery, ibid. 52 (1988) 43.CrossRefGoogle Scholar
  15. 15.
    C. Amrhein and D. L. Suarez, ibid. 52 (1988) 2785.CrossRefGoogle Scholar
  16. 16.
    L. L. Hench, J. Non-Cryst. Solids 19 (1975) 27.CrossRefGoogle Scholar
  17. 17.
    F. R. Bacon, Glass Ind. 49 (1968) 483.Google Scholar
  18. 18.
    W. A. Lanford, K. Davis, P. Lamarche, T. Laursen, R. Groleau and R. H. Doremus, J. Non-Cryst. Solids 33 (1979) 249.CrossRefGoogle Scholar
  19. 19.
    W. Smit and H. S. Stein, ibid. 34 (1979) 357.CrossRefGoogle Scholar
  20. 20.
    T. Advocat, PhD thesis, University Louis Pasteur, Strasbourg, France (1991).Google Scholar
  21. 21.
    C. Guy, PhD thesis, University Paul Sabatier, Toulouse, France (1989).Google Scholar
  22. 22.
    J. V. Walter and H. C. Helgeson, Am. J. Sci. 277 (1977) 1351.Google Scholar
  23. 23.
    P. Aagaard and H. C. Helgeson, ibid. 282 (1982) 237.CrossRefGoogle Scholar
  24. 24.
    H. C. Helgeson, W. M. Murphy and P. Aagaard, Geochim. Cosmochim. Acta 48 (1984) 2405.CrossRefGoogle Scholar
  25. 25.
    W. M. Murphy and H. C. Helgeson, ibid. 51 (1987) 3137.CrossRefGoogle Scholar
  26. 26.
    A. C. Lasaga, in “Reviews of mineralogy”, Vol. 8 (Mineralogical Society of America, Washington, 1983) 135.Google Scholar
  27. 27.
    J. L. Gamble, “Chemical anatomy, physiology and pathology of extracellular fluid”, 8th Edn (Harvard University Press, Boston, 1967).Google Scholar
  28. 28.
    G. M. Kanapily, O. G. Raabe, C. H. T. Goh and R. A. Chimenti Health Phys. 24 (1973) 497.CrossRefGoogle Scholar
  29. 29.
    G. Feck, PhD thesis, Rheinisch-Westfälischen Technischen Hochschule, Aachen, Germany (1984).Google Scholar
  30. 30.
    J. P. Leineweber, “Biological effects of man-made mineral fibres”, Vol. 2 (World Health Organization, Copenhagen, 1984) p. 87.Google Scholar
  31. 31.
    B. Chouikhi, PhD thesis, University of Orléans, France (1995).Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • P. Baillif
    • 1
  • B. Chouikhi
    • 1
  • L. Barbanson
    • 1
  • J. C. Touray
    • 1
  1. 1.Ecole Supérieure de l'Energie et des MatériauxURA CNRS 1366 Université d'OrléansOrléans Cedex 2France

Personalised recommendations