Journal of Materials Science

, Volume 30, Issue 22, pp 5652–5656 | Cite as

Creep and densification during anisotropic sintering of glass powders

  • A. R. Boccaccini
  • D. M. R. Taplin
  • P. A. Trusty
  • C. B. Ponton
Papers

Abstract

The isothermal sintering behaviour of a barium magnesium aluminosilicate glass powder at 930°C was investigated using a heating microscope. The cylindrical samples exhibited a variable shrinkage anisotropy during sintering. The shrinkage anisotropy ratio, defined as the ratio of the relative change of height and diameter, varied linearly between ∼0.3 and ∼0.98 with the relative volume shrinkage during densification. Shrinkage anisotropy caused creep deformation of the samples. The creep rate varied exponentially with the densification rate and the ratio of creep to densification rates, \({{\dot \varepsilon _{\text{c}} } \mathord{\left/ {\vphantom {{\dot \varepsilon _{\text{c}} } {\dot \varepsilon _\rho }}} \right. \kern-\nulldelimiterspace} {\dot \varepsilon _\rho }}\), decreased as densification proceeded. This is in disagreement with most previous studies, which show a constant value of \({{\dot \varepsilon _{\text{c}} } \mathord{\left/ {\vphantom {{\dot \varepsilon _{\text{c}} } {\dot \varepsilon _\rho }}} \right. \kern-\nulldelimiterspace} {\dot \varepsilon _\rho }}\) during the densification. Overall, the study points out the relevance of variable shrinkage anisotropy and how it affects the densification behaviour of glass powders.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Y. Jeng and M. N. Rahaman, J. Mater. Sci. 28 (1993) 4421.Google Scholar
  2. 2.
    R. K. Bordia and R. Raj, J. Am. Ceram. Soc. 69(3) (1986) C-55.Google Scholar
  3. 3.
    M. N. Rahaman, L. C. de Jongue, G. W. Scherer and R. J. Brook, ibid. 70 (1987) 766.Google Scholar
  4. 4.
    M. N. Rahaman and L. C. de Jongue, ibid. 70 (1990) 707.Google Scholar
  5. 5.
    V. C. Ducamp and R. Raj, ibid. 72 (1989) 798.Google Scholar
  6. 6.
    A. R. Boccaccini and G. Ondracek, Glastech. Ber. 65 (1992) 73.Google Scholar
  7. 7.
    A. R. Boccaccini, Bol. Soc. Esp. Ceram. Vidr. 32 (1993) 27.Google Scholar
  8. 8.
    E. A. Giess, J. P. Fletcher and L. W. Herron, J. Am. Ceram. Soc. 67 (1984) 549.Google Scholar
  9. 9.
    E. A. Giess, C. F. Guerci, G. F. Walker et al., ibid. 68 (1985) C-328.Google Scholar
  10. 10.
    A. R. Boccaccini, Sci. Sint. 23 (1991) 151.Google Scholar
  11. 11.
    Idem, J. Mater. Sci. 29 (1994) 4273.Google Scholar
  12. 12.
    Idem, J. Mater. Sci. Lett. 12 (1993) 943.Google Scholar
  13. 13.
    G. West, A. R. Boccaccini and D. M. R. Taplin, Mattwiss. U. Werkstofftech. 26 (1995) 368.Google Scholar
  14. 14.
    A. R. Boccaccini, P. A. Trusty and D. M. R. Taplin, J. Mater. Sci. Lett. 24 (1995) 199.Google Scholar
  15. 15.
    R. Raj, J. Am. Ceram. Soc. 65 (1982) C-46.Google Scholar
  16. 16.
    H. E. Exner and E. A. Giess, J. Mater. Res. 3 (1988) 122.Google Scholar
  17. 17.
    R. E. Dutton and M. N. Rahaman, J. Mater. Sci. 29 (1994) 1455.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • A. R. Boccaccini
    • 1
    • 3
  • D. M. R. Taplin
    • 1
    • 3
  • P. A. Trusty
    • 2
  • C. B. Ponton
    • 1
    • 3
  1. 1.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK
  2. 2.IRC in Materials for High Performance ApplicationsUniversity of BirminghamBirminghamUK
  3. 3.Department of Environmental SciencesUniversity of PlymouthPlymouthUK

Personalised recommendations