Journal of Materials Science

, Volume 29, Issue 12, pp 3337–3341 | Cite as

Investigation of the phase composition in sintered lanthana-doped (Zr,Sn)TiO4 ceramics

  • Florin Vasiliu
  • Simona Moisa
  • Daniel Grozea
  • Carmen Bunescu


Ceramic materials of the ZrO2-SnO2-TiO2 system, modified by La2O3 and ZnO additions, were investigated by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectrometry. All the samples sintered at 1330, 1360 and 1400 °C contain a (ZrxSnz)TiO4 (x + z= 1, 0 < z ≤ 0.4) solid solution coexisting with ZrTiO4, the last gradually disappearing with rising temperature. At 1400 °C, the (Zr0.8Sn0.2)TiO4 solid solution matrix was not quite homogeneous, containing small amounts of a grain-boundary phase assumed to be La2(Zr,Sn,Ti)2O7 and the expected TiO2-basis solid solution rich in Zn and La. The evolution of the chemical composition of (ZrxSnz)TiO4 solid solution to (Zr0.8Sn0.2)TiO4 and the simultaneous disappearance of ZrTiO4 are thought to explain the variation trends of lattice parameters with increasing sintering temperature.


Polymer Scanning Electron Microscopy Solid Solution Phase Composition Material Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Wakino, Ferroelectrics 91 (1989) 69.CrossRefGoogle Scholar
  2. 2.
    K. Wakino, K. Minai and H. Tamura, J. Amer. Ceram. Soc. 67 (1984) 278.CrossRefGoogle Scholar
  3. 3.
    S. Hirano, T. Hayashi and A. Hattori, ibid. 74 (1991) 1320.CrossRefGoogle Scholar
  4. 4.
    G. Wolfram and H. E. Göbel, Mater. Res. Bull. 16 (1981) 1455.CrossRefGoogle Scholar
  5. 5.
    J. C. Mage and C. Deljurie, Brevet d'Invention No. 80 04601, Paris, France, 1980.Google Scholar
  6. 6.
    A. E. McHale, R. Kudesia and A. H. Lee, in Proceedings of a Symposium on Electroceramics, Solid State Ionics, edited by H. L. Tuller and D. M. Smyth (1988) p. 88.Google Scholar
  7. 7.
    A. E. McHale and R. S. Roth, J. Amer. Ceram. Soc. 66 (1983) C18.CrossRefGoogle Scholar
  8. 8.
    A. E. McHale and R. S. Roth, ibid. 69 (1986) 827.CrossRefGoogle Scholar
  9. 9.
    R. E. Newnham, ibid. 50 (1967) 216.CrossRefGoogle Scholar
  10. 10.
    P. Filhol, G. Gaquere, G. Desgardin, P. Laffez and C. Deljurie, in Proceedings of a Conference on Dielectric Resonators for Satellite Broadcasting, Lannion, France, 1980, p. A7/1–8.Google Scholar
  11. 11.
    J. M. Wu and H. W. Wang, J. Amer. Ceram. Soc. 71 (1988) 869.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Florin Vasiliu
    • 1
  • Simona Moisa
    • 1
  • Daniel Grozea
    • 2
  • Carmen Bunescu
    • 3
  1. 1.Research Institute for Aircraft MaterialsBucharest-MagureleRomania
  2. 2.Institute of Physics and Technology of MaterialsBucharest-MagureleRomania
  3. 3.METAV S.A.BucharestRomania

Personalised recommendations