Skip to main content
Log in

A generalized law of mixtures

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of two-phase composites are predicted using a rigorous continuum mechanics analysis and an equivalent microstructural transformation approach. This leads to a generalized law of mixtures which is contrasted with the classical linear law of mixtures which requires some explicit assumptions. The generalized law of mixtures enables prediction of a variety of mechanical properties of a two-phase composite with any volume fraction, grain shape and phase distribution. It is shown that the classical linear law of mixtures is a specific case of the generalized law of mixtures. Examples are given from continuous Cu-W composites, the particulate Co-WC system, Al/SiCp composites, α-β Ti-Mn alloys and α-β Cu-Zn alloys for the predictions of properties such as Young's modulus, yield strengths, flow stresses, the overall friction stresses and the overall Hall-Petch coefficients. It is shown that the theoretical predictions by the generalized law of mixtures are in very good agreement with the corresponding experimental results drawn from the literature, for both continuous fibre composites and particulate reinforced systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Voight, Wied. Ann. 38 (1889) 573.

    Google Scholar 

  2. I. Tamura, Y. Tomota and H. Ozawa, in “Proceedings of the 3rd International Conference on Strength of Metals and Alloys”, Vol. 1 (Institute of Metals, and Iron and Steel Institute, London, 1973) p. 611.

    Google Scholar 

  3. H. Fischmeister and B. Karlson, Z. Metallkde 68 (1977) 311.

    Google Scholar 

  4. P. D. Funkenbusch, J. K. Lee and T. H. Courtney, Met. Trans. 18A (1987) 1249.

    Google Scholar 

  5. Y. L. Su and J. Gurland, Mater. Sci. Eng. 95 (1987) 151.

    Google Scholar 

  6. S. Ankem and H. Margolin, Met. Trans. 13A (1982) 595.

    Google Scholar 

  7. N. C. Geol, S. Sangal and K. Tangri, ibid. 16A (1985) 2013.

    Google Scholar 

  8. Idem, ibid. 16A (1985) 2023.

    Google Scholar 

  9. H. C. Lee and J. Gurland, Mater. Sci. Eng. 33 (1978) 125.

    Google Scholar 

  10. S. Ankem and H. Margolin, Met. Trans. 13A (1982) 603.

    Google Scholar 

  11. B. Karlson and G. Linden, Mater. Sci. Eng. 17 (1975) 209.

    Google Scholar 

  12. I. Gurland and K. Cho, in “Proceedings of the 7th International Symposium on Stereology”, Vol. 6, Caen, France, 1987, edited by J. L. Chermant (Acta Stereology, Ljubljana, Yugoslavia, 1987) Suppl. III, p. 135.

    Google Scholar 

  13. K. Cho and J. Gurland, Met. Trans. 19A (1988) 2027.

    Google Scholar 

  14. J. Gurland, Trans. Met. Soc. AIME 212 (1958) 452.

    Google Scholar 

  15. Z. Fan, PhD Thesis, University of Surrey (1993).

  16. E. E. Underwood, in “Stereology and Quantitative Metallography”, ASTM STP 504 (American Society for Testing and Materials, Philadelphia, PA, 1972) p. 3.

    Google Scholar 

  17. Z. Fan, P. Tsakiropoulos and A. P. Miodownik, Mater. Sci. Technol. 8 (1992) 922.

    Google Scholar 

  18. Z. Fan, P. Tsakiropoulos, P. A. Smith and A. P. Miodownik, Philos. Mag. 67A (1993) 515.

    Google Scholar 

  19. L. M. Brown and D. R. Clarke, Acta Metall. 23 (1975) 821.

    Google Scholar 

  20. H. Ford, “Advanced Mechanics of Materials” (Wiley, New York, 1963) pp. 115–21, 129–31.

    Google Scholar 

  21. E. O. Hall, Proc. Phys. Soc. Lond. B64 (1951) 747.

    Google Scholar 

  22. N. J. Fetch, J. Iron Steel Inst. 174 (1953) 25.

    Google Scholar 

  23. A. J. E. Foreman, Acta Metall. 3 (1955) 322.

    Google Scholar 

  24. R. Lowrie and A. M. Gonas, J.Appl.phys. 36 (1965) 2189.

    Google Scholar 

  25. B. Paul, Trans TMS-AIME 218 (1960) 36.

    Google Scholar 

  26. H. Doi, Y. Fujiwara, K. Miyake and Y. Osawa, Met. Trans, l (1970) 147.

    Google Scholar 

  27. P. J. Withers, PhD thesis, University of Cambridge (1988).

  28. L. C. Davis, Metall. Trans. 22A (1991) 3065.

    Google Scholar 

  29. S. Ahmed and F. R. Jones, J. Mater. Sci. 25 (1990) 4933.

    Google Scholar 

  30. D. L. McDanels, R. W. Jech and J. W. Weeton, Trans. Met. Soc. AIME 233 (1965) 636.

    Google Scholar 

  31. H. Fischmeister and H. E. Exner, Arch. Eisenhuttenw. 37 (1966) 499.

    Google Scholar 

  32. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids 11 (1963) 127.

    Google Scholar 

  33. C. Nishimatsu and J. Gurland, Trans. ASM 52 (1960) 469.

    Google Scholar 

  34. B. O. Jaensson and B. O. Sundstrom, Mater. Sci. Eng. 9 (1972) 217.

    Google Scholar 

  35. F. F. Voronov and D. B. Balashov, Phys. Metals Metallogr. 2 (1960) 127.

    Google Scholar 

  36. R. Keiffer and P. Schwarzkopf, in “Hartstoffe und Harmetalle” (Springer, Vienna, 1953).

    Google Scholar 

  37. D. L. McDanels, Metall. Trans. 16A (1985) 1105.

    Google Scholar 

  38. M. W. Mahoney, A. K. Ghosh and C. C. Bampton, in “Proceedings of ICCM VI/ECCM2”, Vol. 2, edited by F. L. Mathews itet al. (Eisevier, London, 1987) p. 272.

    Google Scholar 

  39. DWA Composite Specialities Inc., “Guide to Composite Materials” (ASM, 1987).

  40. R. L. Trumper, Metal Mater. (November) (1987) 31662.

  41. W. C. Harrigan Jr, J. Metals (August) (1991) 4332.

  42. A. L. Geiger and J. A. Walker, ibid August (1991) 8.

  43. S. Spanoudakis and R. J. Young, J. Mater. Sci. 19 (1984) 487.

    Google Scholar 

  44. S. Ahmed and F. R. Jones, Composites 21 (1990) 81.

    Google Scholar 

  45. P. J. Withers, W. M. Stobbs and O. B. Pedersen, Acta Metall. 37 (1989) 3061.

    Google Scholar 

  46. S. Ankem and H. Margolin, Met. Trans. 17A (1986) 2209.

    Google Scholar 

  47. J. S. Park and H. Margolin, ibid. 15A (1984) 155.

    Google Scholar 

  48. P. Uggowitzer and H. P. Stuwe, Z. Metallkde 73 (1982) 277.

    Google Scholar 

  49. E. Werner and H. P. Stuwe, Mater. Sci. Eng. 68 (1984–1985) 175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Z., Tsakiropoulos, P. & Miodownik, A.P. A generalized law of mixtures. JOURNAL OF MATERIALS SCIENCE 29, 141–150 (1994). https://doi.org/10.1007/BF00356585

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356585

Keywords

Navigation