Skip to main content
Log in

Effects of mechanical pressure on charge transport in some ferrocene derivatives in the presence of adsorbed vapours

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The change in adsorption-induced electrical conductivity of some ferrocene derivatives as a function of temperature has been studied under moderate pressures. At a constant cell temperature, the conductivity of the pure ferrocene derivatives in the dry state depends on the applied pressure and this pressure dependence of conductivity is significantly different for different materials. A spectacular change in the electrical conductivity behaviour of these materials at the vapour-adsorbed state, as a function of temperature under mechanical pressure, has been observed. Pressure-induced change in conductivity of different ferrocene derivatives at the vapour-adsorbed state is remarkably different. The results have been discussed in the light of different existing theories. The unusual variation of conductivity with temperature under pressure is thought to be due to the phase transition in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. F. Turner, I. Karube and G. S. Wilson,“Biosensors” (Oxford University Press, Oxford, New York, Tokyo, 1987).

    Google Scholar 

  2. X. B. Wang, C. D'silva and R. Pethig, J. Mol. Electron. 6 (1990) 129.

    CAS  Google Scholar 

  3. M. H. Smit and A. E. G. Cass, Anal. Chem. 62 (1990) 2429.

    Article  CAS  Google Scholar 

  4. B. W. Rockett and G. Marr, J. Organomet. Chem. 416 (1991) 327.

    Article  CAS  Google Scholar 

  5. C. E. Carraher, J. E. Sheets and C. U. Pittman, “Advances in Organometallic and Inorganic Polymer Science” (Marcel Dekker, New York, Basel, 1982).

    Google Scholar 

  6. Y. Okamoto, J. Y. Chang and M. A. Kantor, J. Chem. Phys. 41 (1964) 4010.

    Article  CAS  Google Scholar 

  7. A. V. Maksimuchev, V. A. Zhorin, A. T. Ponomerenko and N. S. Enikolopjan, Dokl. Phys. Chem. Akad. Nauk SSSR 241 (1978) 593.

    Google Scholar 

  8. B. Karvaly, B. Mallik and G. Kemeny, J. Mater. Sci. Lett. 4 (1985) 912.

    Article  CAS  Google Scholar 

  9. A. Bhattacharjee and B. Mallik, ibid. 11 (1992) 35.

    Article  CAS  Google Scholar 

  10. Idem, J. Mater. Sci. 27 (1992) 5877.

    Article  CAS  Google Scholar 

  11. B. Mallik and A. Bhattacharjee, J. Phys. Chem. Solids 50 (1989) 1113.

    Article  CAS  Google Scholar 

  12. A. Bhattacharjee and B. Mallik, Bull. Chem. Soc. Jpn 64 (1991) 3129.

    Article  CAS  Google Scholar 

  13. K.-J. Euler, R. Kirchhoff and H. Metzendorf, Mater. Chem. 4 (1979) 611.

    Article  CAS  Google Scholar 

  14. T. N. Misra, B. Rosenberg and R. Switzer, J. Chem. Phys. 48 (1968) 2096.

    Article  CAS  Google Scholar 

  15. B. Mallik, A. Ghosh and T. N. Misra, Proc. Indian Acad. Sci. (Part I) 88A (1979) 25.

    CAS  Google Scholar 

  16. Idem, Bull. Chem. Soc. Jpn 52 (1979) 2091.

    Article  CAS  Google Scholar 

  17. H. Watanabe, I. Motoyama and K. Hata, ibid. 39 (1965) 850.

    Article  Google Scholar 

  18. B. Karvaly, B. Mallik and G. Kemeny, J. Chem. Soc. Farad. Trans, 1 81 (1985) 1939.

    Article  CAS  Google Scholar 

  19. G. A. Samara and H. G. Drickamer, J. Chem. Phys. 37 (1962) 474.

    Article  CAS  Google Scholar 

  20. H. A. Pohl, A. Rembaum and A. Henry, J. Am. Chem. Soc. 8 (1962) 2699.

    Article  Google Scholar 

  21. M. R. Boon, Phys. Status Solidi (b) 51 (1972) K55.

    Article  CAS  Google Scholar 

  22. A. K. Bandopadhay, S. Chatterjee, S. V. Subramanyan and B. R. Bulka, Mater. Sci. 7 (1981) 97.

    Google Scholar 

  23. M. Batley and L. E. Lyons, Aust. J. Chem. 19 (1966) 345.

    Article  CAS  Google Scholar 

  24. B. Rosenberg, T. N. Misra and R. Switzer, Nature 217 (1968) 5127.

    Article  Google Scholar 

  25. H. G. Drickamer and C. W. Frank, “Electronic Transition and the High Pressure Chemistry of Solids” (Chapman and Hall, London, 1973) p. 100.

    Book  Google Scholar 

  26. F. Gutmann and L. E. Lyons, “Organic Semiconductor”, Part A (Wiley, New York, 1967) p. 497.

    Google Scholar 

  27. E. Postow and B. Rosenberg, Bioenergetics 1 (1970) 467.

    Article  CAS  Google Scholar 

  28. M. F. Daniel, A. J. Leadbetier and M. A. Majid, J. Chem. Soc. Farad. Trans. 2 77 (1981) 1837.

    Article  CAS  Google Scholar 

  29. K. Sato, M. Katada, H. Sano and M. Konno, Bull. Chem. Soc. Jpn 57 (1984) 2361.

    Article  CAS  Google Scholar 

  30. K. Iwai, M. Katada, I. Motoyama and H. Sano, ibid. 60 (1987) 1961.

    Article  CAS  Google Scholar 

  31. M. F. Daniel, A. J. Leadbetier, R. E. Meads and W. G. Erker, J. Chem. Soc. Farad. Trans. 2 74 (1978) 456.

    Article  CAS  Google Scholar 

  32. F. Gutmann, H. Keyzer and L. E. Lyons, “Organic Semiconductor”, Part B (Krieger, Malabar, FL, 1983) p. 219.

    Google Scholar 

  33. J. C. Medina, C. Li, S. G. Bott, J. L. Atwood and G. W. Gokel, J. Am. Chem. Soc. 113 (1991) 366.

    Article  CAS  Google Scholar 

  34. F. M. Colombo, C. D. Rau and V. A. Parsegian, Science 256 (1992) 655.

    Article  CAS  Google Scholar 

  35. F. P. Bundy, Phys. B 139/140 (1986) 390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, A., Mallik, B. Effects of mechanical pressure on charge transport in some ferrocene derivatives in the presence of adsorbed vapours. Journal of Materials Science 29, 4875–4882 (1994). https://doi.org/10.1007/BF00356537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356537

Keywords

Navigation